Template/Pro forma for Submission

NMHS-Himalayan Institutional Project Grant

NMHS-FINAL TECHNICAL REPORT (FTR)

Demand-Driven Action Research and Demonstrations

	GBPNI/NMHS-2019-	Date of Submission	2	2	0	8	2	0	2	3
NMHS Grant Ref. No.:	20/SG, 25.12.2019		d	d	m	m	у	у	у	у

TRIP PATTERNS AND ITS IMPLICATIONS ON INTERMEDIATE PUBLIC TRANSPORT SERVICES IN IMPHAL, INDIA

Project Duration: from (24.12.2019) to (24.06.2023).

Submitted to: Er. Kireet Kumar Scientist 'G' and Nodal Officer, NMHS-PMU National Mission on Himalayan Studies, GBP NIHE HQs Ministry of Environment, Forest & Climate Change (MoEF&CC), New Delhi E-mail: nmhspmu2016@gmail.com; kireet@gbpihed.nic.in; kodali.rk@gov.in

> Submitted by: [Dr S.Padma] [CSIR Central Road Research Institute, New Delhi] [Contact No.: 9818988762.] [E-mail: padma.crri@nic.in]

GENERAL INSTRUCTIONS:

- 1. The Final Technical Report (FTR) has to commence from the start date of the Project (as mentioned in the Sanction Order issued by NMHS-PMU) till completion of the project duration. Each detail has to comply with the NMHS Sanction Order.
- 2. The FTR should be neatly typed (in Arial with font size 11 with 1.5 spacing between the lines) with all details as per the enclosed format for direct reproduction by photo-offset printing. Colored Photographs (high resolution photographs), tables and graphs should be accommodated within the report or annexed with captions. Sketches and diagrammatic illustrations may also be given detailing about the step-by-step methodology adopted for technology development/ transfer and/ or dissemination. Any correction or rewriting should be avoided. Please provide all information under each head in serial order.
- 3. Any supporting materials like Training/ Capacity Building Manuals (with detailed contents about training programme, technical details and techniques involved) or any such display material related to project activities along with slides, charts, photographs should be brought at the venue of the Annual Monitoring & Evaluation (M&E) Workshop and submitted to the NMHS-PMU, GBP NIHE HQs, Kosi-Katarmal, Almora 263643, Uttarakhand. In all Knowledge Products, the Grant/ Fund support of the NMHS should be duly acknowledged.
- 4. The FTR Format is in sync with many other essential requirements and norms desired by the Govt. of India time-to-time, so each section of the NMHS-FTR needs to be duly filled by the proponent and verified by the Head of the Lead Implementing Organization/ Institution/ University.
- 5. Five (5) hard-bound copies of the Project Final Technical Report (FTR) and a soft copy of the same should be submitted to the **Nodal Officer**, **NMHS-PMU**, **GBP NIHE HQs**, **Kosi-Katarmal**, **Almora**, **Uttarakhand**.

The FTR is to be submitted into following two (02) parts:

Part A – Project Summary Report

Part B – Detailed Project Report

In addition, the Financial and other necessary documents/certificates need to be submitted along with the Final Technical Report (FTR) as follows:

Annexure I	Consolidated and Audited Utilization Certificate (UC) & Statement of Expenditure (SE) , including the interest earned for the last Fiscal year and the duly filled GFR-19A (with year-wise break-up).
Annexure II	Consolidated Interest Earned Certificate
Annexure III	Consolidated Assets Certificate showing the cost of the equipment in
	Foreign/ Indian currency, Date of Purchase, etc. (with break-up as per the
	NMHS Sanction Order and year wise).
Annexure IV	List of all the equipment, assets and peripherals purchased through the
	NMHS grant with current status of use, including location of deployment.
Annexure V	Transfer of Equipment through Letter of Head of Institution/Department
	confirming the final status of equipment purchased under the Project.
Annexure VI	Details, Declaration and Refund of any Unspent Balance transferred through Real-Time Gross System (RTGS)/ PFMS in favor of NMHS GIA General

Demand-Driven Action Research Project

DSI	DSL: Date of Sanction Letter							
2	5	1	2	2	0	1	9	

d d m m y y y y

DPC: Date of Project Completion

2	4	0	6	2	0	2	3
d	d	m	m	у	у	у	у

Part A: Project Summary Report

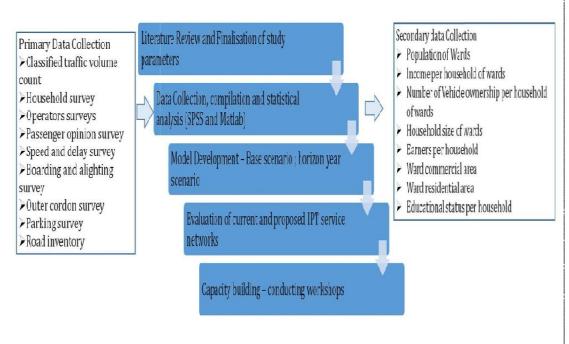
1. **Project Description**

i.	Project Grant Ref. No.:	NMHS_SP_SG_68 NMHS/2019-20/SG68/68
ii.	Project Category:	Small Grant yes Medium Grant Large Grant
iii.	Project Title:	Trip patterns and its implications on Intermediate public transport services in Imphal, India
iv.	Project Sites (IHR States/ UTs covered) (<i>Location Maps</i> <i>attached</i>):	Mb Mb<

۷.	Scale of Project Operation:	Local	Yes	Regional		Pan-Himalayan	
vi.	Total Budget:	0.44. (in Cr)					
vii.	Lead Agency:	CSIR-Central Road Research Institute					
	Lead Pl/ Proponent:	Dr. S.Padma, Principal Scientist, CSIR-Central Road Research Institute					
Co-PI/ Proponent: Manipur Institute of Technology, Takyelpat , Imphal Pin- 795004 (Manipur)						, Imphal	
viii.	Implementing Partners:	Directorate of Transport , Government of Manipur					
Key Persons (ContactB.K Sharma, Joint Director of Transport, for DiDetails, Ph. No., E-mail):Manipur					r Director (Transpor	t),	

2. Project Outcomes

2.1 Abstract/ Summary (not more than 250-300 words)


The prominent effect of improvement in transportation system is the ability to easily access the places of work, education and emergency. In cities around the world, it is seen that lower income groups often are moved to the periphery of the city which in turn affects their travel characteristics due to larger commute distance / cost. It is found that public transport (PT) is negligent in Imphal and it is the Intermediate Public Transport (IPT) services which cater to the needs of travel in the city of Imphal (Ahmed and Victory, 2012). In the event of emphasizing the IPT modes, it is imperative to assess whether the existing IPT services in the city can meet the demand generated for travel. In order to make such assessments, the trip pattern of the city needs to be understood. The analytical assessment of travel behavior of commuters would then be used as an input to check if the IPT systems operational in the city are able to cater to the demand generated. An evaluation of the IPT services through the development of a social vulnerability index to identify the wards having increasing social vulnerable groups. Subsequently, it is cross classified based on the accessibility levels to health care facilities for these wards helps to identify the list of wards that need improvement in terms of accessibility. A possible scenario evaluation of route modification of IPT services based on passenger flows was also be carried out for streamlining the existing services. Considering the above, the list of objectives accomplished as given below

Objective:

• To collect and collate the existing database with respect to road network, settlement locations with demographic details along with the operational characteristics of existing Intermediate Public Transport services.

- To collect the primary data with respect to the travel characteristics and satisfaction level in Imphal using household survey and details on existing load profile along various routes and the occupancy survey of the intermediate public transport services.
- To carry out empirical analysis of the collected data.
- To develop the revised routing of the intermediate public transport services operational in Imphal if needed.

Methodology/Approach:

Approach:

- All the requisite primary surveys were carried out to develop the four stage model .
- In order to assess the sufficiency of the existing IPT routes a user satisfaction based questionnaire was designed and carried out.
- An index of social vulnerability was developed. A cross classification of the developed indices with the accessibility to various health care facility was ascertained.
- Based on the developed transport model the demand matrix for shared auto services was corrected.
- The corrected demand matrix of share auto was assigned to the self identified line routes and the volume by capacity ratio of these routes was determined.

Outcomes:

• A social vulnerability index highlights the wards which have higher proportion of indicators of social vulnerability. The study showed that the most socially vulnerable wards for the currently defined study area are located in the east Imphal district.

- The trip generation equations for the work trips, education trips as well as other trips were produced along with the estimated gravitation parameters to understand the distribution of various trips within the study area.
- The obtained demand matrix was assigned to the network
- The assigned demand was corrected / calibrated through field observed traffic volumes using 'Least squares' method.
- The corrected demand matrix was then used to ascertain the LOS of the user identified routes of share auto in Imphal study area.

Conclusions:

- The study concluded that from the current surveyed traffic volumes of select corridors of Imphal the need to make infrastructural interventions such as by-pass may be explored.
- The study also finds that conversion of current diesel auto to electric auto is welcomed by both operators as well as commuters.
- The IPT user opinion survey assessed the importance given to various service/infrastructure attributes of IPT by the user and found the average importance given to be mostly 'neutral', 'not important' indicating the need to sensitize/ make aware the users of better features entitled or existing in other metro cities.
- The IPT user opinion highlighted the need to provide training to drivers of IPT with safe driving practices and also sensitize them towards women's safety as these were the attributes with high importance but least satisfaction as rated by the commuters.
- The study identified through the vulnerability index as well as with the cross-classification of accessibility the wards which have high vulnerability index but low accessibility to health care facility. These wards need to have their accessibility to health care facilities improved.
- The study through the time table based assignment of self identified line routes found that during morning hours of 8:00 am to 9:00 am the volume by capacity of the lines was high thereby envisaging a need for possibly a service of higher capacity namely, buses.

Recommendations:

 To introduce E-autos instead of existing diesel share autos, to provide safe driving practice trainings sessions as well as to provide training on sensitization of IPT drivers towards women safety. To explore the possibility of introducing buses to cater to the commute of IPT passengers. To explore the possibility of introducing a bypass for the through traffic of the study area.

2.2. Objective-wise Major Achievements

S#	Objectives	Major achievements (<i>in bullets points</i>)
1	To collect and collate the existing database with respect to road network, settlement locations with demographic details along with the operational characteristics of existing Intermediate Public Transport services.	 Ward maps obtained, census data obtained. The existing ward map has been digitized. The road network has already been input in VISUM. The details on operational characteristics of IPT services have been obtained from the Directorate of Transport Manipur and they have been integrated into the model.
2	To collect the primary data with respect to the travel characteristics and satisfaction level of commuters in Imphal using household survey and details on existing load profile along various routes and the occupancy survey of the intermediate public transport services.	 TAZ's have been fixed for the study area and the social vulnerability index has been developed. Trip generation model has been completed Trip distribution and mode choice have been carried out in VISUM and the individual vehicle demand matrix is converted into hourly matrix. The assignment was carried out for a morning hour of the network. The demand matrix was corrected using the primary traffic volume data collected from the field.

3.	To carry out empirical analysis of	• the social vulnerability index has been developed
	the collected data	 The collection of secondary data in terms of the location of schools, colleges, hospitals as well as the route characteristics of IPT services has been carried out. The collected data has been attached herewith in Part B. Regression based trip generation models namely, productions and attractions were ascertained for the study area and the trips were distributed based on the observed distance based gravitation parameters for various trip purposes. The mode choice analysis was carried out using the Apollo choice modelling software and the constants only model coefficients were used to arrive at the modal split. The mode-wise demand matrix was then assigned to the major roads of the Imphal network
4.	To develop the revised routing of the intermediate public transport services operational in Imphal.	 The possible routes as operated by share autos in Imphal had been collected and accordingly the demand has been assigned on the routes as a form of public transport. Since other intermediate public transport services do not follow explicit routes they have been ignored while assessing the LOS offered by IPT. However these other IPT services have been assigned as a part of private network.

Note: Further details may be summarized in DPR Part-B, Section-5. Supporting materials may be enclosed as annexure/ appendix separately to the FTR.

2.3. Outputs in terms of Quantifiable Deliverables*

S#	Quantifiable	Monitoring	Quantified Output/	Deviations, if
	Deliverables*	Indicators*	Outcome achieved	any, & Remarks
				thereof:
1	Ward maps obtained,	Ward maps	Ward maps obtained,	No deviations
	census data obtained.	obtained, census	census data obtained.	
	The details on	data obtained. The	The details on	

[
	operational	existing ward map	operational	
	characteristics of IPT	has been digitized.	characteristics of IPT	
	Digitization of existing	The road network	Digitization of existing	
	roadway infrastructure	has already been	roadway infrastructure	
	and various means of	input in VISUM.	and various means of	
	transport in VISUM	The network details	transport in VISUM	
		along have been		
		provided for		
		detailed analysis		
2	To collect the primary	Establishment of	Trip rates have been	No deviations
	data with respect to the	trip generation	achieved. Trip	
	travel characteristics and	models	distribution model has	
	satisfaction level of	Conducting Trip	been established with	
	commuters in Imphal	Distribution	gravitation parameters	
	using household survey	Conducting Mode	calibrated for the	
	and details on existing	choice of	home based work,	
	load profile along various	commuters using	educational and other	
	routes and the	developed utility	trips. Base year	
	occupancy survey of the	functions	assignment has been	
	intermediate public	Base year	carried out for private	
	transport services.	assignment of	and IPT traffic	
		private vehicle		
		traffic and IPT		
		traffic		
3	To carry out empirical	Development of	The social	Yes, deviations
	analysis of the collected	'index of transport	vulnerability index has	have been
	data	social needs' and	been developed	made as the
		'Index of IPT	•	data collected
		provision'		was not
		•		sufficient to
				develop the
				index of
				transport social
				needs and index
				of IPT provision
				hence
				'vulnerability
				valliciability

				index' has been developed.
4	To develop the model	IPT Indicators of	Territory indicators in	No deviations
	highlighting the existing	need and provision	terms of Passenger	
	routes of intermediate	by wards	kilometres	
	public transport network		(PassKmTrav (AP))	
	and to assess whether		for Share Autos and	
	the existing routing is		VehKmTrav (AP) for	
	sufficient or not		private vehicles	

*As stated in the Sanction Letter issued by the NMHS-PMU.

2.4. Strategic Steps with respect to Outcomes (in bullets)

S#	Particulars	Number/ Brief Details	Remarks/
			Attachment
	New Methodology/	The methodology includes development of	
1.	Technology developed, if any:	social vulnerability index, development of	
		four stage model along with calibrated	
		gravitation parameters for the study area.	
	New Ground Models/	A tool to support strategic planning is	
2.	Process/ Strategy developed,	developed	
	if any:		
3.	New Species identified, if	Not Applicable	
0.	any:		
	New Database established, if	Yes , A VISUM based road network	
	any:	database which can be easily imported	
4.		into any GIS based software has been	
		developed. The database also includes	
		details on hospital locations as well as	
		school locations within the study area.	
5.	New Patent, <i>if any</i> :		
	I. Filed (Indian/		
	International)		
	II. Technology Transfer,		
	if any:		
6.	Others, <i>if any</i>		

Note: Further details may be summarized in DPR Part-B, Section-5. Supporting materials may be enclosed as annexure/ appendix separately to the FTR.

3. Technological Intervention

S#	Type of Intervention		Unit Details (No of villages benefitted/ Area Developed)
1.	Development and deployment of indigenous technology :	The methodology includes development of social vulnerability index, development of four stage model along with calibrated gravitation parameters for the study area.	All 37 wards considered within the study area
2.	Diffusion of high end technology in the region	Not Applicable	
3.	Induction of New Technology in the region	Not Applicable	
4.	Publication of Technological/ Process Manuals	2 papers	
5.	Others, <i>if any</i>	Vulnerability Index, Calibrated Gravitation Parameters	Entire study area

4. New Data Generated over the Baseline Data

S#	New Data Details	Status of Existing Baseline	Addition and Utilisation New data
1.	Social vulnerability index is created for the wards within the study area	Census data	The census data was used to arrive at the social vulnerability index and has been furthered to understand the accessibility of various public infrastructure based Points of Interest (P.O.I), namely health care facilities. This will enable the decision makers to identify wards wherein infrastructural enhancement for considered POI's needs to be made.

2.	The gravitation	Road network	The trip generation equations establish the
	parameters as well as	details	relationship between the available census
	the trip generation		variables and the trips produced within the ward.
	equations		This helps in identifying the trips generated from
			the wards and the variables that best explain the
			production and attraction of the trips. The trip
			rates obtained from these equations help in
			policy initiations such as identifying the demand
			and supply gap for the future. Also the calibrated
			gravitation parameters can be used by policy
			decision makers to arrive at the accessibility to
			various public infrastructure based POI's

Note: Further details may be summarized in DPR Part-B. Database files in the requisite formats (Excel) may be enclosed as annexure/ appendix separately to the soft copy of FTR.

5. Demonstrative Skill Development and Capacity Building/ Manpower Trained

S#	# Type of Activities Details with Activity Inter		Activity Intended for	F	Participants/Trained		
		number		SC	ST	Women	Total
1.	Workshops					-	
2.	On-Field Trainings	3	For undertaking			Women	
			various field studies			surveyors	
3.	Skill Development						
4.	Academic	1 M.E. thesis in	Certain activities of				
	Supports	3 JRFs	the project				
	Others (if any)	Participated in the			1		
		one week one lab					
		CSIR initiative					
		wherein					
		showcased the					
		study result					
		findings in front of					
		various North					
		Eastern					
		Stakeholders.					

Note: Further details may be summarized in DPR Part-B. Supporting materials may be enclosed as annexure/ appendix separately to the FTR.

6. Linkages with Regional & National Priorities (SDGs, INDC, etc.)/ Collaborations

S#	Linkages /collaborations	Detail of activities (No. of Events Held)*	No. of Beneficiaries
1.	Sustainable Development Goals (SDGs)/ Climate Change/INDC targets addressed	Access to various facilities is attached to SDGs	
2.	Any other:	State level authorities focusing on health and educational facilities by providing god accessibility option through road connectivity	

Note: Further details may be summarized in DPR Part-B, Section-6. Supporting materials may be enclosed as annexure/ appendix separately to the FTR.

7. Project Stakeholders/ Beneficiaries and Impacts

S#	Stakeholders	Support Activities	Impacts in terms of income generated/green skills built
1.	Line Agencies/ Gram Panchayats:		
2.	Govt Departments (Agriculture/ Forest/ Water):	The developed vulnerability index will help the town planning agencies to arrive at the regions wherein concentration of socially vulnerable groups is present. The cross mapping of the socially vulnerable groups with the accessibility levels of the wards can be used to provide either enhanced accessibility or provide infrastructural interventions in terms of identified public infrastructure POIs	
3.	Villagers/ Farmers:		
4.	SC Community:		
5.	ST Community:		
6.	Women Group:		

Others, <i>if any</i> :	The assessed LOS for the self identified	
	line of IPT can be used to arrive at the	
	improvement of services by introducing	
	higher capacity services such as Buses	
	which have shown a negative growth	
	over the past decade.	
	Others, <i>if any</i> :	line of IPT can be used to arrive at the improvement of services by introducing higher capacity services such as Buses which have shown a negative growth

Note: Further details may be summarized in DPR Part-B, Section-6. Supporting materials may be enclosed as annexure/ appendix separately to the FTR.

8. Financial Summary (Cumulative)

Please attach the consolidated and audited Utilization Certificate (UC) and Year-wise Statement of Expenditure (SE) separately, *ref.* **Annexure I.**

9. Major Equipment/ Peripherals Procured under the Project** (*if any*)

S#	Name of Equipment	Quantity	Cost (INR)	Utilisation of the Equipment after project
1.	NIL		•	

**Details should be provided in details (ref. Annexure III &IV).

10. Quantification of Overall Project Progress

S. No.	Parameters	Total (Numeric)	Remarks/ Attachments/ Soft copies of documents
1.	IHR States/ UTs covered:	01	
2.	Project Sites/ Field Stations Developed:	Imphal	Data base development as well as policy initiatives
3.	Scientific Manpower Developed	3 JRF +1 Masters	
	(PhD/M.Sc./JRF/SRF/ RA):	thesis	
4.	Livelihood Options promoted		
5.	Technical/ Training Manuals prepared	Technical report	
		prepared	
6.	Processing Units established, if any		
7.	No. of Species Collected, if any		
8.	No. of New Species identified, if any		
9.	New Database generated (Types):	Database on road	
		network	
		developed	
	Others (if any)		

Note: Further details may be summarized in DPR Part-B. Supporting materials may be enclosed as annexure/ appendix separately to the FTR.

11. Knowledge Products and Publications:

S#	Publication/ Knowledge Products		<i>umber</i> International	Total Impact Factor	<i>Remarks/</i> Enclosures
1.	Journal – Research Articles/ Special Issue:	To be co	mmunicated		
2.	Book – Chapter(s)/ Monograph/ Contributed:				
3.	Technical Reports:	Project Report			
4.	Training Manual (Skill Development/ Capacity Building):				
5.	Papers presented in Conferences/Seminars:	2			
6.	Policy Drafts/Papers:				
7.	Others, if any:	Master's	thesis - one		

<u>Note</u>: Please append the list of KPs/ publications (with impact factor, DOI, and further details) with due Acknowledgement to NMHS. Supporting materials may be enclosed as annexure/ appendix separately to the FTR.

12. Recommendation on Utility of Project Findings, Replicability and Exit Strategy

Particulars	Recommendations
Utility of the Project Findings:	The project has identified not only the socially vulnerable wards but
	has also cross mapped the accessibility levels to POI's (namely
	hospitals) from these wards. The operator's opinion survey provides
	an insight into the revenue generated by the IPT operators. If the
	routes as well as fleet sizes are known it would be possible to
	estimate the revenue generated for each IPT along each route and
	thereby identify the routes with lesser revenue generation. The user
	opinion survey helped in identifying the importance each IPT
	commuter associated with the indicators used for assessing an IPT
	service as well as in identifying the satisfaction levels of the
	commuters. The LOS assessment of certain road stretches of Imphal
	along with the projected assessment of the LOS shall help the
	decision makers in assessing if a widening of these roads is required
	or is there a need for other infrastructural intervention. The LOS of
	the self made lines of share autos shall help in understanding the
	demand vs supply variations for the share auto riders.

Replicability of Project/ Way Forward:	The method adopted in the current study can be adopted to any region or area.
Exit Strategy:	 The project has highlighted the methodology required to identify the process involved in identifying policy decisions to be made by stakeholders. The stakeholders can adopt the methodology described in the report for future updation as well as to make revised policy decisions. The methodology highlighted shall enable to identify the key target public infrastructure based POI deficit areas using the estimated gravitation parameters developed. The methodology is robust and shall help the policy makers to make the right decisions.

Dr S.Padma (PROJECT PROPONENT) (Signed and Stamped)

(HEAD OF THE INSTITUTION)

(Signed and Stamped)

Place: New Delhi

Date:/..../.....

Replicability of Project/ Way Forward:	The method adopted in the current study can be adopted to any region or area. The project has highlighted the methodology required to identify the
Exit Strategy:	The project has highlighted the methodology and process involved in identifying policy decisions to be made by stakeholders. The stakeholders can adopt the methodology described in the report for future updation as well as to make revised policy decisions.
	The methodology highlighted shall enable to identify the key target public infrastructure based POI deficit areas using the estimated gravitation parameters developed. The methodology is robust and shall help the policy makers to make the right decisions.

Dr S.Padma (PROJECT PROPONENT) (Signed and, Stamped) nited Kingdom) Principal Scientist Transportation Planning & Environment Division CSIR - Central Rcad Research Institute New Delhi-110025 Ministry of Science and Technology, Government of

(HEAD OF THE INSTITUTION) (Signed and Stamped)

Place: New Delhi

Date:/...../..... प्रो. मनोरंजन परिड़ा/Prof. Manoranjan Parida निदेशक/Director सी.एस.आई.आर.-केन्द्रीय सड़क अनुसंधान संस्थान CSIR-Central Road Research Institute नई दिल्ली-110025/New Delhi-110025

PART B: DETAILED PROJECT REPORT

The Detailed report should include an Executive Summary and it should have separate chapters on (i) **Introduction**, (ii) **Methodologies/Strategy/Approach**, (iii) **Key Findings and Results**, (iv) **Overall Achievements**, (v) **Project's Impacts in IHR** (vi) **Exit Strategy** and Sustainability, (vii) **References**, and (viii) **Acknowledgements** (acknowledging the financial grant from the NMHS, MoEF&CC, Gol).

Other necessary details/ Supporting Documents/ Dissemination Materials (*New Products/ Manuals/ Standard Operating Procedures (SOPs)/ Technology developed/Transferred, etc, if any*) may be attached as Appendix(ces).

1 EXECUTIVE SUMMARY (not more than 2–3 pages)

1.1 Introduction:

The prominent effect of improvement in transportation system is the ability to easily access the places of work, education and recreation. In cities around the world, it is seen that lower income groups often are moved to the periphery of the city which in turn affects their travel characteristics due to larger commute distance / cost. It is found that public transport (PT) is negligent in Imphal and it is the Intermediate Public Transport (IPT) services which cater to the needs of travel in the city of Imphal (Ahmed and Victory, 2012). In the event of emphasizing the IPT modes, it is imperative to assess whether the existing IPT services in the city can meet the demand generated for travel. In order to make such assessments, the trip pattern of the city needs to be understood. The analytical assessment of travel behavior of commuters would then be used as an input to check if the IPT systems operational in the city are able to cater to the demand generated. An evaluation of the IPT services through the development of an index for IPT provision in Imphal city was to be made. However due to IPT services lacking designated stop points; the penetration of IPT services with respect to accessibility to identified public infrastructure based Points of Interest was assessed. Since the usage of IPT services predominantly is done by socio economically vulnerable commuters a ward based vulnerability index has been developed. A possible scenario evaluation of route modification of IPT services based on passenger flows was also carried out for streamlining the existing services.

1.2 Objectives and Concept Methodology

- To collect and collate the existing database with respect to road network, settlement locations with demographic details along with the operational characteristics of existing Intermediate Public Transport services.
- To collect the primary data with respect to the travel characteristics and satisfaction level in Imphal using household survey and details on existing load profile along various routes and the occupancy survey of the intermediate public transport services.
- To carry out empirical analysis of the collected data.
- To develop the revised routing of the intermediate public transport services operational in Imphal.

For assessing the operational characteristics of existing intermediate public transport system in Imphal a primary survey on user satisfaction levels as well as a survey on operators of intermediate public transport services was carried out. The satisfaction level of the users was ascertained from the questionnaire. The performance of the intermediate public transport system in terms of its existing load profile as well as the accessibility to various public infrastructure based Points of Interest POI's namely health care services was assessed through the conventional four stage modeling. The accessibility can be ascertained through the use of developed calibrated gravitation parameters for work, education and other related trips. The estimated gravitation parameters can be utilized by policy makers to identify regions with lower accessibility and thereby enhance the accessibility to these places. The developed four stage model was used to arrive at the revised routing for intermediate public transport system namely the share-auto. This is ideally because the share autos were the only services with fixed routes which could be modeled for revised routing.

1.3 Study Findings

The wards within the study area which had higher indicators of socio economic vulnerability were identified and were cross mapped with the accessibility of these wards to the health care facility centers in Imphal. The gravitation parameters as calibrated using the collected household data can be used to arrive at the accessibility to any other public infrastructure based POI's such as educational institutes. The mode choice model was used to assess the demand for each of the identified mode of commute in the study area of Imphal. The demand matrixes obtained as such were corrected using the 'least square' method specified in VISUM and accordingly were assigned to the modeled network. The collected OD matrix was able to ascertain the need for by pass in the Imphal study area. The possibility of introducing e-auto services in Imphal was explored through the IPT operator as well as commuter survey. The probability of shifting to E-auto service if introduced was ascertained through the willingness to pay survey. The demand matrix of share auto which was corrected using VISUM was then assigned to a self digitized line routes of share auto services in order to arrive at the level of service on the line routes as experienced by commuters.

2 INTRODUCTION

2.1 Background (max. 500 words)

Limited mobility and accessibility can lead to lower quality of life and well-being, as well as social exclusion. Traditional approaches to transport modeling assess and identify the disparity amongst persons of transport needs and supply through conventional four stage modeling approaches. Literature specify that the quantitative approaches to measure the geographical dispersion of people with transport needs can be a socio –economic measure, population measure, measure of transport supply, and measure of distance, cost and accessibility [6]. In the current paper the need for transport is measured through the identification of social vulnerability based indicators from census of India NMHS-2022 Final Technical Report (FTR) – Project Grant 2 of 94

website. The indicators reflect the economic profile of households/wards/areas and thereby act as proxy to households/wards/areas of transport need to services such as hospitals. Socio-economic transport needs based indices are often used to identify the gaps between needs and supply [14], [4], [5]. Indices based spatial identification of transport needs gives the flexibility of using existing census based secondary data to arrive at spatial indices that enable clustering of regions into areas of low/high transport needs [18].

While several methods are available to model indices the current paper shall make use of Principal Components Analysis method (PCA) based factor analysis algorithm used in SPSS. PCA is a popular method towards reducing the dimensionality of large number of interrelated indicators while retaining as much as possible the variance in the data [7]. Development of indices using PCA is prevalent in healthcare related services [8], [9]; [10], [11] with off-late importance in transportation planning as well. PCA is utilized to arrive at the weights for each indicator. In several instances only the weights of the first principal component are used for generating the scores [11], [12], [14] however it has been argued that only the usage of first principal components which usually explains a very low variance would be erroneous [11].

The second aspect of study is the heterogeneous customer satisfaction index [16] for the IPT services plying in Imphal. The questionnaire was designed to include various forms of IPT services, namely, auto, share-auto, taxi, e-rickshaw, cycle-rickshaw, Tata Magic (Van) however the survey results indicated that the questionnaire had been filled incompletely without the mention of the IPT type in more than 90% of the sample collected.

The third aspect of the study comprised of understanding the operator characteristics to see the revenue they generate and if they are willing to make necessary shift to an environment friendly mode of transport.

The last aspect of the study is to develop a four stage model to arrive at the demand matrix for share auto which is then assigned onto the self made lines to assess the LOS.

2.2 Overview of the major issues addressed (max. 500 words)

- The infrastructural deficiency in terms of health care facility along with accessibility deficiencies can be assessed with the methodology specified as well as the estimated gravitation parameters.
- The user satisfaction index can be used to assess the indicators that require intervention in the intermediate public transport services from user perspective
- The operators survey indicates the operational characteristics of the IPT services that ply within Imphal.
- The origin destination survey at the outer cordon points indicate the amount of external to external trips which show the feasibility of construction of a by- pass. Since the percentage

bypassable traffic as captured by the survey is in the range of maximum 16 to 37% of the total traffic destined to the respective zones

- the requirement of a bypass can be explored.
- The choice of mode predominantly for IPT users in event of introduction of e-auto.

2.3 Baseline Data and Project Scope (max. 500 words)

The current study utilized the existing secondary data on the road infrastructure, health centers, and educational institutes as well as census data. The secondary data available on health centers was digitized by physical visits to the site of various helath providers. The secondary data so collected was as follows:

S. No.	Institute/ Organization	Type of Linkages	Brief Description
1	Directorate of Transport, Imphal, Manipur	Secondary Data collection as well as end usage of the recommendations	The secondary data has been collected from the Directorate in terms of the number of IPT routes operational within the Imphal city and the fare structure of the same
2	Health Department	Secondary data collection	The list of hospitals with the study area has been obtained from the department.
3	Directorate of Economics and Statistics	Secondary Data Collection	The list of hospitals was also obtained from them and a discussion was held with the officials to ascertain if there have been any recent studies carried out with respect to the number of literates, unemployed as well as school going kids in Imphal region.
4	Manipur Remote sensing application centre	Secondary data collection	The ward boundary map was given to use by the division
5	Directorate of Education	Secondary data collection	The list of schools with details of number of students enrolled in various classes and their geo positions have been obtained

Table 2.1: List of institute from which various data has been collected.

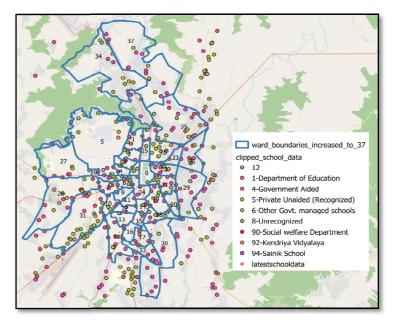


Figure 1: TAZ's and school locations

Table 2.2 - LIST OF HOSPITALS and their coordinates				
1	GOVERNMENT HOSPITAL			
	Imphal East			
	JNIMS	24.81272	93.959238	
	UPHC Sangaipat	24.788115	93.951773	
	PHC Bashikhong	24.7500283	93.947045	
	UPHC konok	24.75286	93.935438	
	UPHC Minuthong	24.822672	93.95075	
	UPHC Mantripukhri	24.849173	93.93433	
	Health & Wellness Center Kairang Meitei	24.842953	93.954156	
	PHC Heingang	24.855906	93.953791	
	PHC Akampat	24.774649	93.949004	
	Imphal West			
	RIMS	24.815673	93.925212	
	PHC kakwa	24.76898	93.937471	
	UHC Singjamei (Mongsangei)	24.78273	93.937556	
	UPHC kwakeithel	24.790103	93.92583	
	UPHC Langol Tarung	24.831404	93.933876	
2	PRIVATE HEALTHCARE FACILITIES			
	Imphal East			
	Remedy Hospital	24.802693	93.94761	
	Christian Hospital	24.823662	93.945403	
	Advanced Hospital	24.798073	93.946273	
	Acme Fertility & Healthcare center	24.8040283	93.951256	
	Mangal Life Care Super specialty Hospital	24.814485	93.947678	
	Horizon Hospital	24.81313	93.959327	

Little Clinic	24.827342	93.95059
City Hospital	24.825528	93.944285
Aadarsh Medicare Services	24.812723	93.958858
Babina Diagnostics	24.812593	93.957267
Escent diagnostics	24.80296	93.951196
Shaibo Hospital	24.830355	93.969877
Heal Plus Hospital	24.80502	93.95986
Saina Institute of Medical Sciences	24.806958	93.958022
Catholic Meical Centre	24.883354	93.920499
Imphal West	1	
Maipakpi Maternity & Child Hospital	24.81511	93.94241
Asian Hospital	24.788086	93.922238
Imphal Hospital & Research Centre	24.812472	93.929157
Sky Hospital	24.81296	93.928037
Iboyaima Hospital	24.784456	93.938521
Raj Medicity	24.815898	93.943808
Shija Hospitals	24.836065	93.913903
Suba Hospitals & associated reproductive centre	24.812812	93.924805
Lamjingba Hospital	24.812307	93.924073
Mother's Care Children's Hospital	24.803628	93.92658
Imphal Heart Institute	24.803632	93.926588
Hillside Charitable Hospital	24.827172	93.932745
AyangLeima	24.81156	93.934233
Care n Cure	24.825233	93.931818
50 bedded integrated Ayush Hospital	24.830857	93.925353
Sangai Healthcare	24.8119	93.923908
Irengbam Thamcha Devi Nursing & Healthcare	24.806847	93.928527
ILANG hospital	24.741096	93.93586
Yaima eye hospital	24.78716	93.935593
iGastro Care	24.790378	93.924806
Chamber Hospital	24.809775	93.936248

The present study shall focus on assessing the travel behavior patterns of commuters in Imphal, Manipur. The study area is more or less a flat area of 3472.51 hectares. Figure 2 shows the study area along with the ward boundaries.

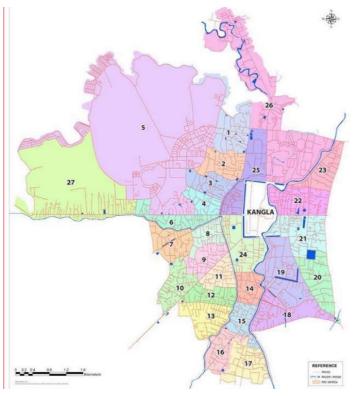


Figure 2: Ward boundaries of Imphal city (Source : <u>www.amrut.gov.in</u>)

2.4 Project Objectives and Target Deliverables (as per the NMHS-Sanction Order)

Project Objectives	Quantifiable Output against each objective	Progress made against Monitoring Indicators (specified in Sanction Letter)	Remarks
To collect and collate	Ward maps	Ward maps obtained,	The details on
the existing database	obtained, census	census data obtained.	operational
with respect to road	data obtained. The	The existing ward map	characteristics of IPT
network, settlement	details on	has been digitized. The	services have been
locations with	operational	road network has	obtained from the
demographic details	characteristics of	already been input in	Directorate of
along with the	IPT	VISUM. The network as	Transport Manipur
operational	Digitization of	well as ward boundaries	and they are in the
characteristics of	existing roadway	need further refinement	process of being
existing Intermediate	infrastructure and	which is currently under	integrated into the
Public Transport	various means of	progress.	model.
services.	transport in VISUM		

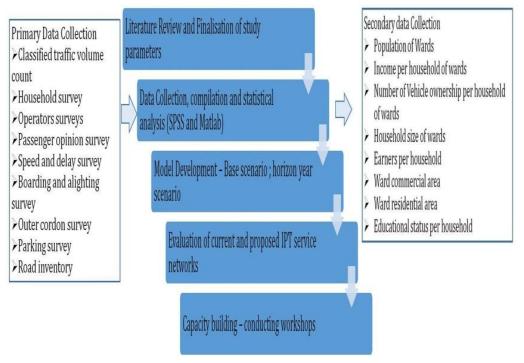
To collect the primary data with respect to the travel characteristics and satisfaction level of commuters in Imphal using household survey and details on existing load profile along various routes and the occupancy survey of the intermediate public transport services.	Establishment of trip generation models Conducting Trip Distribution Conducting Mode choice of commuters using developed utility functions Base year assignment of private vehicle traffic and IPT traffic	TAZ's have been fixed for the study area and the social vulnerability index has been developed. All aspects of four stage modeling completed.	All stages completed and the results have been tabulated.
To carry out empirical analysis of the collected data	Development of 'index of transport social needs' and 'Index of IPT provision'	the social vulnerability index has been developed	The collection of secondary data in terms of the location of schools, colleges, hospitals as well as the route characteristics of IPT services has been carried out. The collected data has been attached herewith.
To develop the model highlighting the existing routes of intermediate public transport network and to assess whether the existing routing is sufficient or not	IPT Indicators of need and provision by wards	The secondary data on the existing routes of the IPT services has been collected and the process of digitizing the routes has been initiated.	

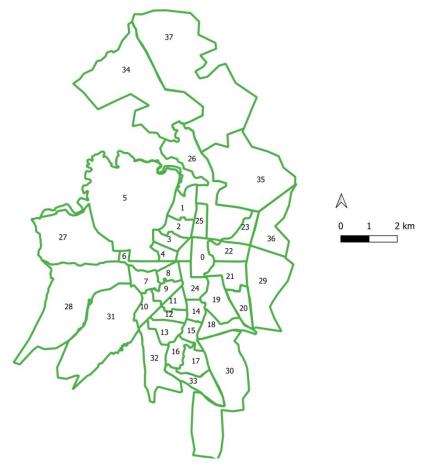
If required, to develop		Based on cross	Given in appendix.
the revised routing of	Based on gaps	classification the gaps	
the intermediate public	identified, new	have been identified	
transport services	routes would be	assuming the	
based on passenger	specified	gravitation parameters	
flows		of a previous study	

3 METHODOLOGIES/STARTEGY/ APPROACH – <u>supporting documents to be attached.</u>

3.1 Methodologies used (max. 500 words)

Figure 3 highlights the broad methodology of the study. The flow chart highlights the conventional four stage modeling which has been enhanced by identification of wards with high vulnerability index.




Fig 3 : Broad Methodology

3.1 a) The development of vulnerability index involves the following methods:

Indices development using PCA has been quite prevalent in the field of health sciences, urban quality of life and business climate indicator. The current paper utilizes the steps highlighted in [8] and [12] which encompass broadly the methodology of formulating indices based on PCA algorithm based factor analysis. [8] Highlights the application of PCA based factor analysis in developing a socio economic composite index with indicators foreseen to impact early childhood development. The paper discusses the statistical requirements of chosen indicators in order for it to be used in development of index. A similar approach adopted in [12] highlights the indicators that can be used to assess the

areas with transport deficiency.

The area based index for social vulnerability is formulated using personal socio economic status based indicators. Since the measure is on social vulnerability the developed index indicates advantaged areas through low index score whereas disadvantaged areas are indicated through high index score [6], [12]. The index has been calculated for the 37 Traffic Analysis Zones (TAZs) within Greater Imphal Region (Fig 4).

Fig 4: Study area Traffic Analysis Zones (TAZs) for Imphal encompassing Greater Imphal area. The ABISV is calculated as followed in two different ways from the literature:

1. It is calculated as the weighted sum of the factor score coefficients/components scores [8]

$$ABISV_j = \sum_{k=1}^K \omega_k FSC_k \tag{1}$$

K - total number of factors/components determined to be extracted for maximum explanation of variance within the data

$$\omega_k = \frac{\text{percentage variance explained by component/ factor } k}{\text{total variance explained uptill K}}$$

 FSC_k - factor score coefficient of component/factor k corresponding to each ward j

2. It is calculated as the weighted sum of the indicators [12] of social vulnerability for different indicators within the wards. The formulation of the index is as follows:

$$ABISV_{j} = \sum_{i=1}^{n} TI_{ij}P_{ik}$$
(2)

 TI_{ij} – the standardised personal socio economic indicator for transport needs *i* of ward *j*; and P_{ik} is the weighting of the personal socio economic Indicator for transport needs *i* under component/factork where k is assumed to be 1 (component/factor 1). The indicators of transport disadvantage are standardised so that they take values between 0 and 1, using the following equation:

$$T_{ij} = \frac{I_{ij} - I_i^{min}}{I_i^{max} - I_i^{min}} 100$$

And the weights for the indicators are assessed as follows [13], [21]:

$$P_{ik} = \frac{(FL_{ik})^2}{\lambda_k}$$

 FL_{ik} - is the factor loading of indicators *i* for component/factor k = 1

 λ_k – eigenvalue for component/factor k = 1

The indicators chosen for development of index were proportion of female, proportion below 6, proportion of female kids below 6, proportion of illiterates, proportion of female illiterates, proportion of marginal workers, proportion of female marginal workers, proportion of non workers, proportion of female main workers, proportion of main other worker, proportion of female main workers, proportion of marginal other worker, proportion of main other worker, proportion of main workers from agriculture, industrial and cultivation, proportion of main workers from household industries and cultivation female, proportion of marginal workers from household industries and cultivation female, proportion of main workers for eg, proportion of main workers essentially encompasses proportion of main 'other' workers and proportion of main agriculture labourers, industrial and cultivation workers. The above mentioned indicators were initially processed to carry out the necessary descriptive analysis and from these a set of indicators analysis in SPSS.

Table 3.1 shows the final set of indicators chosen such that the KMO statistics obtained was 0.665 and the Bartlett's test is significant (table 3.2).

Table 3.1: Area based personal socio economic Indicators considered for area based index for Social
Vulnerability for the study area of Imphal

Indicator			Mean	5% Trimmed	Skewness	Kurtosis	Range
muicator				Mean			
Prop of p	opulation less	than 6	0.1077	0.1081	-0.307	0.018	0.05
years of ag	е				0.388		
Prop of	illiterate	Female	0.3383	0.3374	0.548	-0.250	0.11
Population	ł				0.388		

0.1493	0.1490	0.223	0.709	0.16
		0.388	_	
0.4251	0.4278	-0.228	-0.004	0.64
		0.388	_	
0.1598	0.1596	0.140	-0.771	0.23
		0.388	_	
0.4754	0.4707	0.272	0.013	0.85
		0.388	_	
0.3810	0.3796	0.424	0.284	0.27
		0.388	_	
0.4923	0.4914	-0.093	-0.686	0.71
		0.388	_	
	0.4251 0.1598 0.4754 0.3810	0.4251 0.4278 0.1598 0.1596 0.4754 0.4707 0.3810 0.3796	0.4251 0.4278 -0.228 0.388 -0.388 0.1598 0.1596 0.140 0.388 0.1596 0.140 0.388 0.1596 0.388 0.4754 0.4707 0.272 0.3810 0.3796 0.424 0.388 0.4914 -0.093	0.4251 0.4278 -0.228 -0.004 0.388 -0.388 -0.771 0.1598 0.1596 0.140 -0.771 0.388 0.4707 0.272 0.013 0.3810 0.3796 0.424 0.284 0.388 0.4914 -0.093 -0.686

*square root transformation: new indicator value= sqrt (old indicator value)

 Table 3.2: KMO and Bartlett's Test

Kaiser-Meyer-Olkin Measure of Sampling Adequacy.		0.665
Bartlett's Test of Sphericity	Approx. Chi-Square	124.812
	df	28
	Sig.	0.000

Interpretation of results from PCA

The indicators as shown in table 3.1 were included in the factor analysis. Since the indicators were not standardized the correlation matrix was used to extract the principal components. The individual indicator's measure of sampling adequacy was ascertained from the anti image correlation table. The components with eigenvalues above 1 were used as the criteria to extract the components and accordingly 3 components were extracted. The factor loading obtained are as shown in Table 3.3.

 Table 3.3: Result of PCA: Varimax rotation factor matrix

Indicators	Component			
	1	2	3	
Prop of households with no Assets*			0.805	
Prop of households not availing bank facilities	0.565		0.545	
Prop of households without latrine facility within			0.821	
the premises*				
Prop of households not having treated tap water	0.442	0.774		
as main source of drinking water*				
Prop of households with single and no exclusive		-0.739		

dwelling room			
Prop of household with drinking water far away		0.813	
from premises*			
Prop of illiterate Female Population*	0.911		
Prop of population less than 6 years of age	0.888		
Percent of Variance	41.24	19.817	13.823

Table 3.3 shows the correlation of the indicators with the components it is to be noted that a positive loading indicates negative association with the component.

3.1 (b) Development of four stage model

Conventional methods for four stage modeling namely Trip generation, trip distribution, mode choice and assignment were carried out. Trip generation includes the cross classification method which was then used to arrive at the regression coefficients for various trip purposes. The trip distribution model involved estimation of the gravitation parameters using KALIBRI function in VISUM. The mode choice involved assessing of the coefficients of the utility function using APOLLO choice modeling software.

3.1 (c) Evaluation of scenarios

- Scenario 1: possibility of constructing a bypass: the possibility of constructing a bypass around the study area was evaluated by assessing the through traffic currently passing through the study area. This is undertaken using the OD matrix.
- Scenario 2: Proportion of people shifting to E-Auto upon introduction of E-auto: Currently the
 auto's and share autos are either diesel or petrol driven. Instead it is proposed that Electric
 autos be introduced. Accordingly a fare structure for E-autos is assumed and the mode choice
 between existing autos/share autos/e-rickshaws and e-autos is evaluated
- Scenario 3: the lines of share autos are assumed to follow public transport lines and accordingly the V/C ratios of the lines were evaluated

3.2 Data collected and Equipments utilized (max. 500 words)

The data collected includes both primary and secondary data. The primary data consisted of several surveys such as

- Household survey completed
- Classified traffic volume count at 18 junction and 8 mid-blocks with occupancy
- Outer cordon Survey with road side interview completed

- Passenger opinion survey completed and data obtained
- Operator survey completed and data obtained
- Boarding –Alighting survey completed
- Road side interview survey completed
- Spot speed survey completed
- Speed and Delay Survey completed

All the above surveys made use of paper based questionnaire surveys, video recordings, radar gun survey as well as moving car method to assess speed and delay. The secondary data collected has been elaborated in section 3.3

3.3 Details of Field Survey conducted, if any (max 500 words)

The primary data collected include:

- Household survey completed
- Classified traffic volume count at 18 junction and 8 mid-blocks with occupancy
- Outer cordon Survey with road side interview completed
- Passenger opinion survey completed
- Operator survey completed
- Boarding –Alighting survey completed
- Road side interview survey completed
- Spot speed survey completed
- Speed and Delay Survey completed

3.3 (a) Household Data

The household data was collected and preliminary data analysis was carried out. The following figures indicate that of the total household samples collected 52 % of the sample population was male and 48% of the sample population was female. The sample population with driver's license was 60% and the remaining 40% had no drivers license. Similarly the vehicle ownership details indicated that 51% of the sampled population had two wheelers, 6% had cars and 26% had both cars and two wheelers.

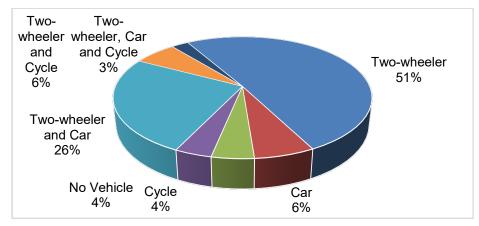


Figure 5 : Vehicle Ownership details of the sampled households

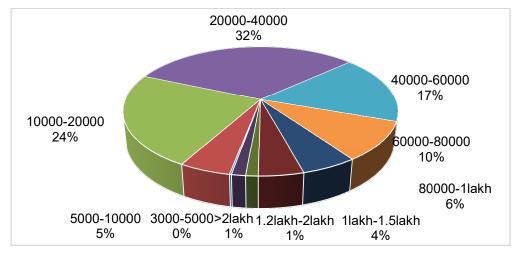


Figure 6 : The monthly household income details of the sampled households

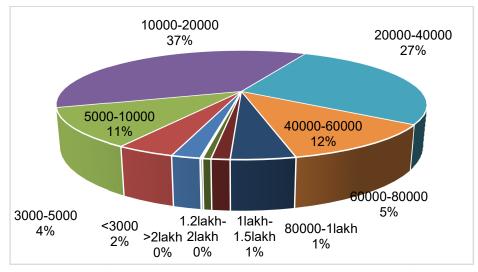


Figure 7 : Individual income of the sampled population

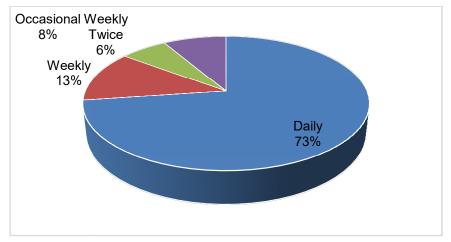


Figure 8: Trip frequency of the sampled population

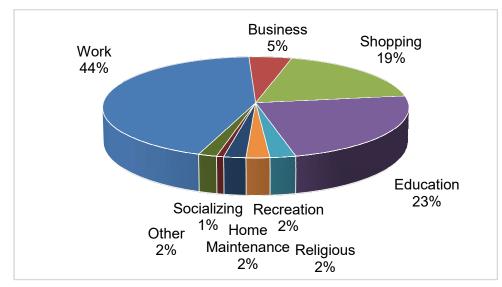


Figure 9: Trip purpose of the sampled population

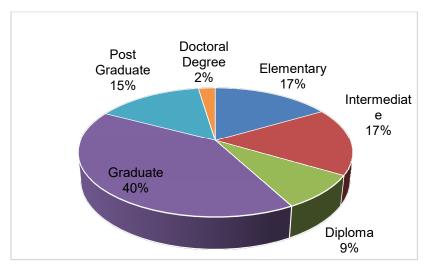


Figure 10 : Distribution of sampled population based on their educational qualification

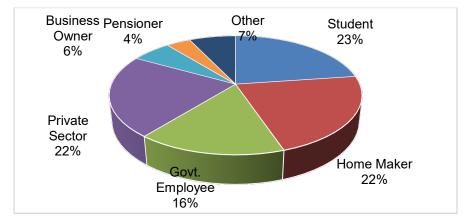


Figure 11 : Distribution of sampled population based on their occupation

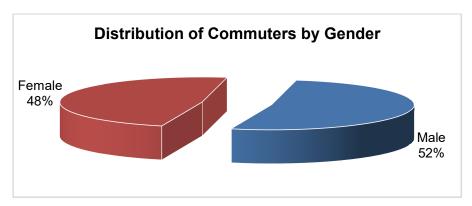


Figure 12: Distribution of the gender of the sampled population

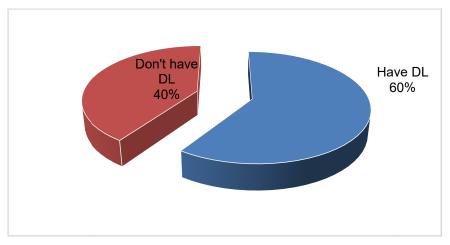


Figure 13 the distribution of sampled population by possession of driving license

3.3 (b) Intermediate Public Transport Survey (IPT) Operator

The chapter presents the summary of IPT operator in Imphal. There are two types of survey; a) user survey: includes the public that uses IPT, b) operator survey: includes the IPT driver. IPT operator

survey aims to know the operational and user characteristics of the present scenario and identify the problems and issue and find appropriate solutions for solving the problems in the future plan. The assessment capture the perception of IPT driver related to their income, trips& distance per day, educational qualification, vehicle ownership, maintenance and various other related heads. Thus, this study could be helpful in creating a clear and vivid picture of IPT operator.

Five types of IPT modes are operating the Imphal municipal area and include three-wheeler autorickshaw, tata magic, maruti van, taxi and E-rickshaw as describe below:

• Three- wheeler auto rickshaw

It is the predominant IPT modes operating in the city. The maximum numbers of passengers are transported by the auto-rickshaw in the Imphal city.

• Auto-rickshaw (Petrol based)

These vehicles run on petrol based, and are an integral part of the society of major urban areas. They are used for door-to- door services such as feeder trips, social and recreational trips, etc. This autorickshaw has a capacity of carrying four passengers at a time.

• Auto-rickshaw (Diesel based)

These vehicles run on high speed diesel and normally operate in the suburban areas. These vehicles have a capacity of carrying six passengers. They are mainly used as an IPT mode on shared basis.

• Tata Magic

The eight seated Tata magic operates on diesel fuel in Imphal city. It is now widely used to transport passengers from the greater Imphal areas. The vehicle is mainly used for long distance regional trips for inter- district passenger transportation. Due to this, the urbanites do not prefer the mode for local transportation.

Maruti van

Maruti vans are servicing as taxis in Imphal. Most of these vehicles are used in school services for students as vanpools. It has a seat capacity of seven.

• Taxi

Taxi services are not popular in Imphal. It is used for specialized trips such as feeder trips to airport, trips made by tourist and some occasional trips. Some of the carpools are also used as taxi with four seated capacity.

• E- Rickshaw

E-rickshaws have become operational as IPT mode in Imphal during the last five years. This vehicle is batteries operated which can be chargeable by electricity. There are two rows of seat with four opening with the capacity of 4 persons excluding the driver. E-rickshaws have become one of the preferred modes of transport between short distances and are operating in major urban and suburban areas and townships.

IPT operator survey has been conducted to understand the socio- cultural status of the IPT operators,

service and infrastructure facilities. It is conducted in the municipal area of Imphal, Manipur. Primary data collections i.e., direct interview is done at their parking lots and garages where the operators were resting or waiting for the passengers. A set of questionnaire has been asked to know the characteristics of the operators. A sample size of 607 operators was collected and analysis has been done. From the collected sample, the percentage share of each IPT modes were found out and shown in figure 14. It is observed that auto-rickshaw (petrol based) has the maximum percentage share of 30%, maruti van 29%, shared auto 17%, tata magic 12%, taxi 6% and E-rickshaw 5%.

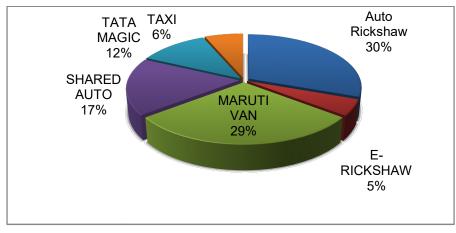


Figure.14: Percentage share of vehicle type within IPT modes at Imphal.

In socio- cultural characteristics; a set of questionnaire was asked to the operator which includes ages, income, and their educational qualifications. Infrastructure facilities and service facilities were also asked to the operators to know the present scenario of the operators. The operator characteristics (socio-economic characteristics and trip-related information) obtained from collected survey data are presented in (Table 3.4) and Figure 15 & 16.

Characteristic	Statistic	
1. Ages group	20-30 yrs	20.6%
	31-40 yrs	57.1%
	41-50 yrs	20%
	51-60 yrs	2.1%
	>65 yrs	0.2%
2. Educational Qualification	Under matriculate	16%
	Matriculate	55%
	Intermediate	22%
	Graduate	5%
	Postgraduate	1%
	Illiterate	1%

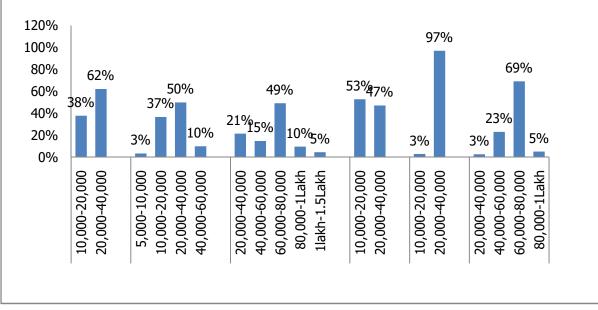


Figure.15: Percentage income level per month with respect to each IPT mode.

From the above table, it is observed that auto driver, shared auto and tata magic are reported to earn between Rs.10000 to Rs.40000 per month, likewise Rs.5000 to Rs.60000 for e-rickshaw, Rs.20000 to Rs.1.5 Lakh for maruti van, Rs.20000 to 1Lakh for taxi. These monthly incomes are their take home incomes keeping aside all their daily, monthly, annual expenditures and rent if they have rented the vehicle.

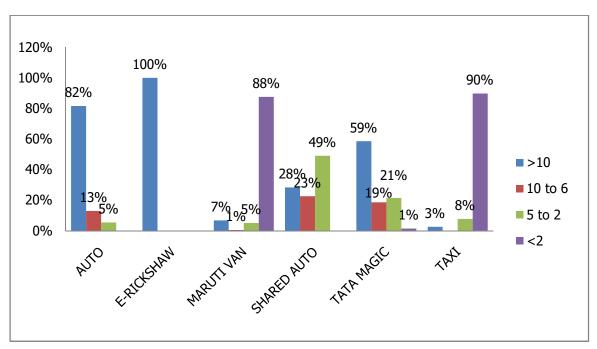


Figure.16: Percentage for trips per day with respect to each IPT mode types.

IPT modes in Imphal can be classified in three groups based on their movement pattern. IPT modes whose origin and destination are within Imphal area are placed under the 'Core to Core' category, while those having the origin within the Imphal and destination outside Imphal are classified in 'Core to semi-periphery' category. Those having the origin within the Imphal and destination outside the state are classified in the 'Core to periphery' categories .607 routes were surveyed and among the movement category, 61% routes are from core to core, while 25% routes are based on core to periphery movement and the rest 14% routes are core to semi-periphery routes.

After analyzing the survey, the total percentage share of IPT ownership were found out and shown in figure 17. It is observed from the figure that the rented IPT has 16% share among the other modes. However, within the rented IPT, auto operator rented the service of Rs.500-Rs.1000 per day, maruti van Rs.600- Rs.1000, shared auto Rs.700-Rs.800 and taxi Rs.800- Rs.1000 per day, whereas most of the e-rickshaw & tata magic driver owned the vehicle.

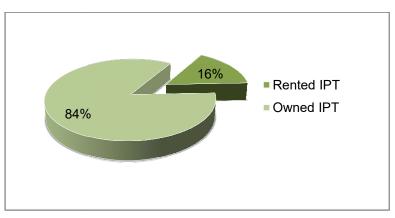


Figure.17: IPT ownership in overall Imphal

In the primary survey, it was found the 98% of the driver in Imphal, having their own IPT modes has not taken loan for buying the vehicle. While only the mere 2% of the driver has taken loan from nationalized bank, private bank and private money lender.

In the survey it is found that, the majority trip length per day for auto rickshaw is between 20 to 50kms, 60 to 100kms for e-rickshaw, 250-500kms for maruti van, 60-100kms for shared auto, 20-50kms for tata magic and 100-250kms for taxi.

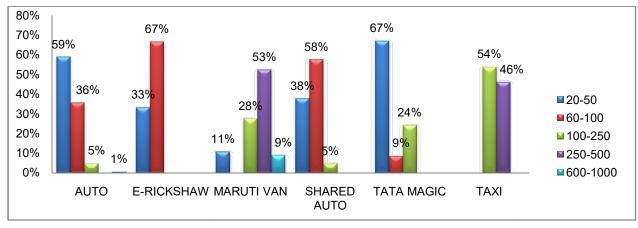


Figure.18: Percentage distance driven for each IPT mode

The seating capacity of the vehicle for each IPT modes are already mentioned above but from the collected data the below figure show the average passenger carried per trip.

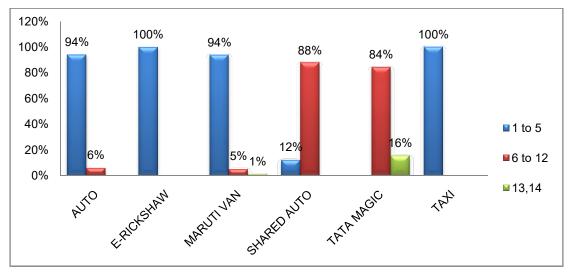


Figure.19: Percentage for avg. no. of passenger with respect to each IPT mode types.

IPT driver spent an average of 10 to 12 hour a day on working. Out of which 15% of maruti van & taxi driver spent 15 to 20 hour a day as they travel to other neighboring state (Nagaland, Mizoram, Assam etc.,) outside Manipur.

Maintenance costs are the cost of periodical repairing and servicing, including the costs of consumable items like brake shoes, battery, tyres etc. For those who have own the vehicle, the monthly cost of periodical maintenance and servicing was found to mostly in the range of Rs.1000- Rs.2000 for auto rickshaw and shared auto, Rs.1000-Rs.1500 for e-rickshaw, Rs.1500-Rs.3000 for Tata magic and Maruti van and taxi has the highest maintenance of Rs.2000-Rs.3000. Monthly paid fines and penalties for petty crimes or other registration charge are in the range of Rs.200-Rs500 for auto rickshaw & shared auto, Rs.100-Rs.150 for e-rickshaw, Rs.1000-Rs500 for auto rickshaw & shared auto, Rs.100-Rs.150 for e-rickshaw, Rs.200-Rs500 for auto rickshaw & shared auto, Rs.100-Rs.150 for e-rickshaw, Rs.1000-Rs500 for auto rickshaw & shared auto, Rs.100-Rs.150 for e-rickshaw, Rs.1000-Rs500 for auto rickshaw & shared auto, Rs.100-Rs.150 for e-rickshaw, Rs.1000-Rs500 for Maruti van & taxi and Rs.500-Rs.200 for Tata

magic. The driver of IPT modes should pay a membership fees if he/she is the member of IPT union. The table below shows the range of each IPT mode.

IPT Modes	Average paid fees for
	membership
Auto	Rs.100
E-Rickshaw	Rs.100
Maruti Van	Rs.500
Shared Auto	Rs.500
Tata Magic	Rs.100
Тахі	Rs.500

Table.3.5: Membership fees for each IPT modes

The major components of the vehicle are motor, fuel, mileage etc, below are the detailed from the collected data.

		I		, ,
	Vehicles	Vehicle technology	Fuel	Mileage (km/l)
		driven		
1.	Auto	4-stroke	Petrol (86%)	7-12 (27%); 15-25 (72%)
			Diesel (10%)	
2.	E-rickshaw	2-Stroke	Electric	70-80
3.	Maruti Van	4-stroke	Petrol	7-12 (64%); 15-25 (36%)
4.	Shared Auto	4-stroke	Diesel	15-25
5.	Tata Magic	4-Stroke	Diesel	15-25 (86%); 30-35 (14%)
6.	Taxi	4-Stroke	Petrol (31%)	7-12 (72%); 15-25 (28%)
			Diesel (69%)	

Table.3.6: Technical specification of vehicle used by IPT operator

CATEGORY	YES	NO
Designated parking point for the service	22%	78%
Immediate access to repair shops	94%	6%
Proper access to restrooms and drinking water facilities	21%	78%
Adequate access to the fuel station	94%	6%
Switch to an electric operated auto given an opportunity	90%	10%
Routes assigned to you by the RTO/Union	54%	46%
Fares fixed by RTO/Union	62%	38%
SOCIAL BENEFIT		

1) Driving training	Driving Training	Insurance	Medical facilities
2) Insurance			
41%	50%	8%	2%

3.3 (c) Spot Speed Survey

Spot speed survey was carried out to assess the speed profile of various vehicles plying within the study area so as to use them in four stage modeling. A sample of the data collected has been shown in the following tables:

			Lower 15 th Percentile	Median 50 th Percentile	Upper 85 th Percentile	Design 98 th Percentile
1	Uripok Kangchup Road	Car	Speed 15	Speed 25	Speed 32	Speed 40
		2-Wheeler	17	24	29	38
	(24.80762302,93.9268273	Bus	12	19	22	27
)	LCV/HCV	15	22	29	37
		Shared Auto/Auto	22	28	32	38
		3/4 wheeler-	19	26	31	34
2	Keishampat Road	Car	31	39	47	52
2		2-Wheeler	24	34	48	58
	(24.7971474,93.9322976)	Bus	19	32	39	46
		LCV/HCV	26	31	39	48
		Shared Auto/Auto	20	30	35	40
		3/4 wheeler-	27	34	39	45
		E-rickshaw	15	20	24	28
3	Mayai Lambi Road	Car	28	35	42	47
5	,	2-Wheeler	26	32	39	48
	(24.78957038,93.9365762	Bus	20	27	33	37
)	LCV/HCV	27	35	40	44
		Shared Auto/Auto	24	29	34	43
		3/4 wheeler-	22	32	37	42
		E-rickshaw	10	14	17	18
4	Indo Myanmar RD. Pisum	Car	21	30	38	50
•		2-Wheeler	22	29	37	43
	Leirak	Bus	26	29	32	37
	(24.7845492,93.9385934)	LCV/HCV	20	27	36	43
		Shared Auto/Auto	21	26	32	37
		3/4 wheeler-	24	31	37	44
5	Wangkhei main Road	Car	21	26	32	40
		2-Wheeler	18	22	29	39
	(24.79376339,93.9526505	LCV/HCV	20	24	27	33
)	Shared Auto/Auto	21	26	32	38
		3/4 wheeler-	20	25	32	39
	Lamlong Tinsid Road	Car	24	29	36	42

	(24.82298329,93.9677546	2-Wheeler	21	26	32	36
		Bus	20	25	28	32
)	LCV/HCV	20	26	31	36
		Shared Auto/Auto	19	24	29	32
		3/4 wheeler-	21	29	35	39
7	Imphal Ukhrul Road	Car	26	32	40	46
-		2-Wheeler	21	27	34	38
	(24.8328199,93.9726436)	Bus	25	29	33	37
		LCV/HCV	26	31	35	39
		Shared Auto/Auto	21	27	31	35
		3/4 wheeler-	19	26	31	36
8	Imphal Pangei RD.	Car	27	32	41	48
0		2-Wheeler	24	30	39	48
	(24.84263849,93.9692475	Bus	27	32	36	38
		LCV/HCV	20	25	31	37
	,		20	25	33	37
0		3/4 wheeler-	21	26	30	34
9	Luwangsangbam Main	Car	36	41	54	64
	RD.	2-Wheeler	37	39	49	58
	(24.86685277,93.9275811	Bus	24	34	47	56
	(24.00000277,00.0270011	LCV/HCV	27	37	46	52
)	Shared Auto/Auto	30	35	41	47
		3/4 wheeler-	34	39	47	52
10	Lukhram Leirak RD.	Car	20	25	32	35
	(24.7946341,93.9154674)	2-Wheeler	17	23	27	29
		Bus	15	19	22	25
		LCV/HCV	15	20	25	29
		Shared Auto/Auto	16	21	26	30
		3/4 wheeler-	15	19	22	24
		E-rickshaw	14	19	22	23
11	RIMS RD.	Car	11	15	19	22
	(24.81336633,93.9269693	2-Wheeler	11	15	19	22
		LCV/HCV	14	17	21	23
)	Shared Auto/Auto	10	14	19	22
		3/4 wheeler-	12	15	17	19
12	Kwakeithel Khagempalil	Car	19	22	18	37
	RD.(24.7862579,93.92606	2-Wheeler	18	23	27	36
		Bus	14	16	22	27
	33)	LCV/HCV	14	16	19	24
		Shared Auto/Auto	10	14	17	19
		3/4 wheeler-	9	14	19	22
13	Porompat DC RD.	Car	20	32	46	60
.0	•	2-Wheeler	20	25	30	39
	(24.8072906,93.96107413	Bus	20	25	29	32
)	LCV/HCV	19	23	28	32
		Shared Auto/Auto	19	25	30	33
			21	25	30	32
		3/4 wheeler-	21	20	30	52

3.3 (d) Speed and Delay Survey

Similarly the speed and delay studies were carried out:

Imphal	DATE	1-Aug-22	TIME	9:15 AM	DIRECTION	1	
College	Latitude	Longitude	Distance	Stop	Start	Delay	Reason
to	24.785685	93.919051			9:17 AM		
Hatta	24.789242	93.923234		01:06.06	2:50.43	01:44.37	Signal
Bazaar	24.789506	93.923556		05:24.13	5:28.74	00:04.62	Car Obstruction
	24.798629	93.933889		05:47.97	08:55.91	03:07.94	Signal
	24.799524	93.93481		09:43.50	11:27.43	01:43.93	Signal
	24.802119	93.937896		12:01.27	12:14.68	00:13.41	Traffic Jam
			CTVC 3- 1	3:17.90			
	24.80253	93.939153		15:23.36	15:33.24	00:11.68	Car Obstruction
	24.81.4056	93.950242		09:35	17:09.69	1	

Hatta	DATE	1-Aug-22	TIME	11:09 AM	DIRECTION	1	
Bazaar	Latitude	Longitude	Distance	Stop	Start	Delay	Reason
to	24.813885	93.950425			11:09		
Imphal	24.807587	93.949799		01:53.63	02:15.95	00:12:22	Signal
College	24.802963	93.949384		03:18.76	03:32.47	00:13.71	Obstruction
	24.802534	93.941494		05:09.69	06:42.05	01:32.36	Signal
	24.800466	93.936228		08:06.75	08:34.99	00:28.24	Obstruction
	24.799791	93.93537		08:48.48	11:59.87	03:11.39	Signal
	24.790158	93.924552		14:19.56	15:22.43	01:02.87	Signal
	24.78555	93.919127		11:25	16:44.69	1	1

Imphal	DATE	1-Aug-22	TIME	11:30 AM	DIRECTION	2	
College	Latitude	Longitude	Distance	Stop	Start	Delay	Reason
to	24.785885	93.919282			11:30		
Hatta	24.789295	93.923396		01:05.17	03:14.65	02:09.48	Signal
Bazaar	24.799361	93.93466		05:45.48	08:56.52	03:11.04	Signal
			CTVC 3 -	11:18.41		I	I
	24.813855	93.950181		11:45	15:11.98		

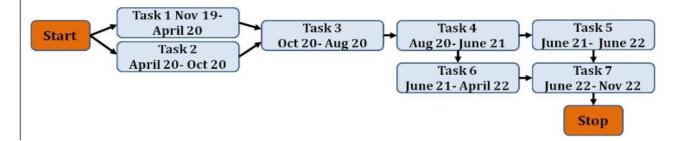
3.4 Strategic Planning for each activity with time frame (max. 200 words)

Based on the research methodology the study is divided into seven broad tasks, which involves seven activities put together with each other.

Task 1: Literature review: involved assimilation of several relevant literature useful towards completion of the current research

Task 2: Based on the literature reviewed the study parameters were formulated.

Task 3: Primary as well as secondary data collection was initiated and the database preparation was done.


Task 4: Data compilation initiated: Development of vulnerability index such that the wards with least vulnerability are identified. This is subsequently cross mapped with the accessibility levels of various wards to the identified public infrastructure based POI's, namely, healthcare services. Activity 1.1 involved development of vulnerability index using factor analysis based PCA method. Activity 1.2 involved identification of location of public infrastructure based POI's namely health care services, and thereby developing the accessibility indices for the wards.

Task 5: Four stage model development : This involved the development of four stage model. Activity 2.1 involves trip generation models namely the production and attraction models. Activity 2.2 involves estimation of gravitation parameters which are used to define accessibility to identified public infrastructure based POI's, namely health care services and also to understand the distribution of trips. Activity 2.3 involves mode choice modeling wherein only constants models were developed. Activity 2.4 involves assignment wherein the demand matrix was calibrated for a peak hour volume and the calibrated share auto demand matrix was reassigned to self developed share auto routes.

Task 6: Evaluation of current IPT services : Development of customer satisfaction index and heterogeneous customer satisfaction to identify indicators that require interventions and Operators opinion as well as characteristics of IPT operators.

Task 7: Capacity building through dissemination workshop: As a part of One week One Lab CSIR-CRRI initiative the study was presented amongst the dignitaries of NE research council.

The PERT Chart below presents various activities, their dependency among each other with time frame for every activity. Time frame shows the number of months (the dates needs to revised as per the sanction dates):

4 KEY FINDINGS AND RESULTS – *supporting documents to be attached.*

4.1 Major Activities/ Findings (max. 500 words)

From the analysis one can deduce that the criteria wherein policy intervention would be required would be when ABISV is high (Above) and Accessibility is low (Below). Therefore wards 27,28, 31 32 30,18,20,22,23,36,25,26,34 and 37 would require policy interventions for provision of health services or for better accessibility to existing facilities.

The indicators used to arrive at the vulnerability index can be grouped into three factors/components which in total explains 74.88 % of the total variance in the data. Component 1 can be described to indicate the 'Literacy based economic wellbeing'. It means that a better 'literacy based economic wellbeing ' is associated with lower proportion of illiterate females and lower proportion of children less than 6 year, low proportion of household not availing bank facilities and low proportion of households not having treated water.

Component 2 explains 19.817% of the variance and is indicative of the 'Basic amenities service level' implying a better 'basic amenities service level' through low proportion of households with drinking water far away from premises and low proportion of households not having treated tap water as main source of drinking water and a high proportion of households with single and no exclusive dwelling room. Essentially the negative loading on proportion of households with single and no exclusive dwelling room is indicative of the fact that the certain characteristics is lacking in the latent variable associated with the principal component.

Component 3 which explains 13.823 % of the variance can be described as indicative of 'economic wellbeing' implying that a better 'economic wellbeing' of the area is indicated through low proportion of households with no assets, low proportion of households without latrine facility within the premises and low proportion of households not availing banking facilities.

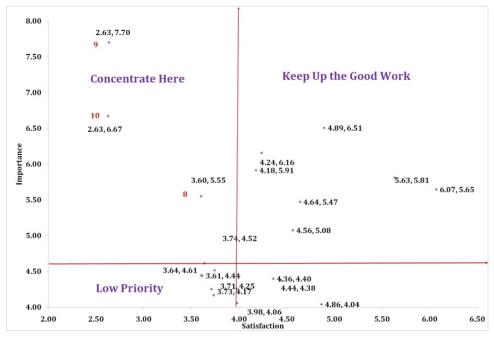


Figure 20: Mapping of satisfaction vs importance scores given by commuters to various attributes of IPT services

The Customer Satisfaction Index and the heterogeneous customer satisfaction Index provide overview of the attributes of the IPT service that require improvements as revealed by the users. In the current study the attributes that were ranked high by the users but were low on their satisfaction levels are 1: the safety within an IPT/Bus service in terms of property theft/eve teasing while travelling between your origin and destination in terms of your usage of the IPT/Bus service 2: the safety at the IPT/Bus stop in terms of property theft/eve teasing while waiting for the service at the IPT/Bus stop in terms of your usage of the IPT/Bus stop in terms of an IPT/Bus service and 3: the safe driving practices of an IPT/Bus driver while travelling between your origin and destination in terms of your usage of the IPT/Bus service.

The calibrated gravitation parameters indicate that distribution of trips peaks at a distance of 3.5 km for work trips and other trips whereas for education trips it peaks at 4 km. The estimated gravitation parameters as obtained for various trip purposes enables us to evaluate the accessibility of chosen public infrastructure based POI's in the study area. The results of evaluated scenarios are presented below:

Scenario 1: The OD matrix for through traffic as shown below :

Table 4.1 : Origin and Destination matrix

O/D	38	39	40	41
38				12.22%
39	6.95%		1.64%	1.64%
40	6.76%	6.76%		2.70%
41	37.04%	16.67%		

The maximum percentage of through traffic originates from zone 38 and has a destination at zone 41. Therefore the need for a bypass can be explored.

Scenario 2: The proportion of IPT riders shifting to E-Auto: In order to evaluate the possibility of introducing an E-auto service the following fare structure has been assumed as follows:

Dist	Fare	Dist	Fare	Dist	Fare	Dist	Fare
1	14.31	9	32.03	17	50.56	25	68.34
2	14.31	10	34.49	18	52.78	26	70.56
3	18.70	11	37.21	19	55.00	27	72.78
4	20.42	12	39.45	20	57.21	28	75.01
5	22.15	13	41.67	21	59.43	29	77.23
6	23.87	14	43.89	22	61.67		
7	25.59	15	46.10	23	63.90		
8	29.56	16	48.32	24	66.12		

Table 4.2 Distance and Fare structure assumed for E Auto

Assuming that the introduced E-Auto would travel at a speed of 35kmph the travel time using the E-Auto was estimated for the distance travelled. The fare structure was used to arrive at the cost for the journey. When the fare structure was lesser than the amount specified in the 'willingness to pay survey' of the commuters the commuter is assumed to use E-Auto. The coefficients determined are as shown in section 4.2.4. The assumptions resulted in the probability of E-Auto being chosen between present IPT as 33.9% and the probability of present IPT as 66.1%.

Scenario 3: The share auto services are assumed to be similar to public transport lines and accordingly the lines were drawn between the identified share auto stands and various locations. A time table based assignment was carried out to assess the demand vs supply deficiencies in form of volume by capacity ratios for the various indentified lines. The assessment identified the following lines had high volume to capacity ratios averaged over various runs within the analysis period. It is observed that the demand generated within the analysis period is not met by the supply. The demand therefore accumulates to the next time period.

line name	direction	stops	length	link run	nun	nber of	PassKm	V BY
		served		time	ser	vice trips	travelled	С
AIRPORTURIPOK	>	10	4.32km	5min 17s	3	12.97km	1439.1km	13.86
AIRPORTURIPOK	<	10	4.32km	5min 17s	4	17.29km	2018.1km	14.58
GMHALL	>	23	6.46km	11min 57s	4	25.8km	631.8km	3.05
Heirok	>	15	5.21km	6min 31s	3	15.6km	140.6km	1.12
Heirok	<	15	5.21km	6min 31s	4	20.8km	290.3km	1.74
KGELJANG	>	11	4.98km	9min 57s	8	39.9km	236.5km	0.74
KGELJANG	<	12	4.98km	9min 59s	5	24.9km	116.09km	0.58
langjing crpf gate	>	13	4.57km	9min 8s	5	22.8km	151.35km	0.82
langjing crpf gate	<	13	4.57km	9min 8s	8	36.6km	538.31km	1.83
MANTRIPUKRI	>	21	9.05km	13min 11s	4	36.2km	2373.8km	8.19
MANTRIPUKRI	<	21	9.028km	13min 11s	11	99.3km	1548.3km	1.94
NAGAMAPALRIMSGATE	>	3	1.34km	2min 41s	2	2.6km	145.1km	6.75
NAGAMAPALRIMSGATE	<	3	1.34km	2min 41s	2	2.6km	171.2km	7.96
NAGKHANGAMPALI	>	13	3.37km	6min 43s	2	6.7km	357.8km	6.62
NAGKHANGAMPALI	<	13	3.37km	6min 43s	2	6.7km	386.05km	7.14
self 15	>	22	8.99km	12min 7s	3	26.9km	1679.1km	7.78
self 15	<	22	8.96km	12min 7s	3	26.8km	274.2km	1.27
self1	>	13	6.11km	12min 13s	3	18.3km	307.7km	2.09
self10	>	17	6.85km	9min 55s	3	20.5km	432.8km	2.63
self10	<	17	6.85km	9min 55s	2	13.7km	462.4km	4.21
self11	<	14	6.31km	12min 15s	2	12.6km	102.0km	1.01
self12	>	11	4.58km	9min 46s	2	9.1km	48.8km	0.66
self13	>	15	4.03km	7min 5s	3	12.1km	106.7km	1.1
self13	<	15	4.03km	7min 5s	2	8.1km	28.5km	0.44
self2	>	18	5.49km	10min 9s	2	10.9km	152.1km	1.73
self2	<	18	5.49km	10min 9s	2	10.9km	281.7km	3.20
self20	>	15	6.73km	11min 39s	2	13.4km	356.4km	3.31
self20	<	15	6.73km	11min 39s	2	13.5km	683.6km	6.34
self22	>	15	5.29km	10min 34s	2	10.6km	507.9km	5.99
self22	<	15	5.29km	10min 34s	2	10.6km	341.7km	4.03
self24	>	13	4.27km	7min 29s	2	8.5km	457.07km	6.69
self24	<	13	4.27km	7min 29s	2	8.5km	425.64km	6.2
self25	>	18	7.77km	14min 28s	2	15.6km	188.07km	1.5

Table 4.3 Self identified line routes for IPT – Share Auto

self26 > 9 2.98km Smin 57s 2 5.96km 54.09km 1.13 self26 9 2.98km Smin 57s 2 5.96km 54.09km 1.13 self27 11 4.87km 8min 22s 3 14.6km 265.4km 2.26 self29 8 4.05km 8min 4s 3 12.1km 40.37km 4.15 self32 > 12 4.14km 8min 53s 3 12.4km 136.2km 1.37 self36 > 19 7.27km 9min 28s 7 50.8km 991.1km 2.43 self36 19 7.27km 9min 28s 3 21.8km 246.7km 1.41 self38 10 5.09km 10min 11s 3 15.2km 338.5km 2.77 self39 14 6.81km 10min 31s 4 27.2km 3.69 self40 > 18 7.64km 13min 34s 4 30.5km 9.03.2km 3.69 self	self25	<	18	7.77km	14min 28s	3	23.3km	187.7km	1.0
self26 < 9 2.98km 5min 57s 2 5.96km 6.5km 0.14 self27 > 11 4.87km 8min 22s 3 14.6km 265.4km 2.26 self29 > 8 4.05km 8min 4s 3 12.1km 403.7km 4.15 self32 > 12 4.14km 8min 53s 3 12.4km 136.6km 1.27 self32 > 12 4.14km 8min 53s 7 28.9km 53.9km 0.23 self36 > 19 7.27km 9min 28s 3 21.8km 246.7km 1.41 self38 > 10 5.09km 10min 11s 6 30.5km 308.5km 2.77 self38 10 5.09km 10min 31s 4 27.2km 734.6km 3.85 self40 > 18 7.64km 13min 34s 6 45.8km 572.2km 1.55 self41		>							
self27 > 11 4.87km 8min 22s 3 14.6km 265.4km 2.26 self29 > 8 4.05km 8min 22s 2 9.7km 12.3km 0.15 self29 > 8 4.05km 8min 4s 3 12.1km 403.7km 4.15 self32 > 12 4.14km 8min 53s 3 12.4km 136.2km 1.37 self36 > 19 7.27km 9min 28s 7 28.9km 991.1km 2.43 self38 > 10 5.09km 10min 11s 6 30.5km 308.6km 1.26 self38 10 5.09km 10min 11s 3 15.2km 338.5km 2.77 self40 > 18 7.64km 13min 34s 4 30.5km 903.2km 3.69 self41 > 14 7.26km 11min 5s 4 29.06km 1282.2km 5.51 self41 ><									
self27 <	self27	>	11	4.87km	8min 22s	3	14.6km	265.4km	2.26
self29 > 8 4.05km 8min 4s 3 12.1km 403.7km 4.15 self32 > 12 4.14km 8min 53s 3 12.4km 136.2km 1.37 self32 > 12 4.14km 8min 53s 3 12.4km 136.2km 1.37 self36 > 19 7.27km 9min 28s 7 50.8km 991.1km 2.43 self36 19 7.27km 9min 28s 3 21.8km 246.7km 1.41 self38 10 5.09km 10min 11s 6 30.5km 308.6km 1.26 self39 14 6.81km 10min 31s 4 30.5km 903.2km 3.69 self40 > 18 7.64km 13min 34s 4 30.5km 903.2km 3.69 self41 > 14 7.26km 11min 5s 2 14.5km 459.4km 3.95 self41 > </td <td>self27</td> <td><</td> <td>11</td> <td>4.87km</td> <td>8min 22s</td> <td>2</td> <td></td> <td>12.3km</td> <td></td>	self27	<	11	4.87km	8min 22s	2		12.3km	
self32 > 12 4.14km 8min 53s 3 12.4km 136.2km 1.37 self32 <	self29	>	8	4.05km	8min 4s		12.1km		
self32 <	self29	<	8	4.05km	8min 4s	5	20.2km	886.8km	5.47
self36 > 19 7.27km 9min 28s 7 50.8km 991.1km 2.43 self36 <	self32	>	12	4.14km	8min 53s	3	12.4km	136.2km	1.37
self36 < 19 7.27km 9min 28s 3 21.8km 246.7km 1.41 self38 > 10 5.09km 10min 11s 6 30.5km 308.6km 1.26 self38 < 10 5.09km 10min 11s 3 15.2km 338.5km 2.77 self30 < 14 6.81km 10min 31s 4 27.2km 734.6km 3.36 self40 < 18 7.64km 13min 34s 4 30.5km 903.2km 3.69 self41 14 7.26km 11min 5s 4 29.06km 1282.2km 5.51 self41 14 7.26km 11min 5s 2 14.5km 459.4km 3.95 self45 > 15 5.01km 10min 34s 7 35.07km 655.1km 2.33 self46 > 13 7.96km 15min 41s 5 39.8km 210.3km 0.66 self48	self32	<	12	4.14km	8min 53s	7	28.9km	53.9km	0.23
self38 > 10 5.09km 10min 11s 6 30.5km 308.6km 1.26 self38 <	self36	>	19	7.27km	9min 28s	7	50.8km	991.1km	2.43
self38 <	self36	<	19	7.27km	9min 28s	3	21.8km	246.7km	1.41
self39 <	self38	>	10	5.09km	10min 11s	6	30.5km	308.6km	1.26
self40 > 18 7.64km 13min 34s 4 30.5km 903.2km 3.69 self40 <	self38	<	10	5.09km	10min 11s	3	15.2km	338.5km	2.77
self40 <	self39	<	14	6.81km	10min 31s	4	27.2km	734.6km	3.36
self41 > 14 7.26km 11min 5s 4 29.06km 1282.2km 5.51 self41 14 7.26km 11min 5s 2 14.5km 459.4km 3.95 self45 > 15 5.01km 10min 34s 7 35.07km 655.1km 2.33 self46 > 13 7.96km 15min 41s 5 39.8km 210.3km 0.66 self48 > 16 11.55km 23min 5s 7 80.8km 306.5km 0.47 self49 > 11 5.96km 9min 59s 3 17.8km 469.8km 3.28 self49 > 11 5.96km 9min 57s 3 17.8km 469.8km 3.89 self5 13 6.6km 12min 13s 3 19.8km 308.5km 1.94 self5 14 6.6km 12min 13s 3 19.7km 1.95 self50 11 4.99km 9min 59s 4 19.9km 378.1km 2.36 <t< td=""><td>self40</td><td>></td><td>18</td><td>7.64km</td><td>13min 34s</td><td>4</td><td>30.5km</td><td>903.2km</td><td>3.69</td></t<>	self40	>	18	7.64km	13min 34s	4	30.5km	903.2km	3.69
self41 <	self40	<	18	7.64km	13min 34s	6	45.8km	572.2km	1.56
self45 > 15 5.01km 10min 34s 7 35.07km 655.1km 2.33 self46 > 13 7.96km 15min 41s 5 39.8km 210.3km 0.66 self48 > 16 11.55km 23min 5s 7 80.8km 306.5km 0.47 self48 < 15 11.55km 23min 3s 2 23.09km 74.7km 0.40 self49 > 11 5.96km 9min 59s 3 17.8km 469.8km 3.28 self49 < 10 5.96km 9min 57s 3 17.8km 556.8km 3.89 self5 13 6.6km 12min 13s 3 19.8km 308.5km 1.94 self5 < 13 6.6km 12min 15s 6 39.6km 619.7km 1.95 self50 < 11 4.99km 9min 59s 4 19.9km 378.1km 2.36 self51 < 19 12.06km 15min 56s 6 72.4km 1919.4km 3.31	self41	>	14	7.26km	11min 5s	4	29.06km	1282.2km	5.51
self46 > 13 7.96km 15min 41s 5 39.8km 210.3km 0.66 self48 > 16 11.55km 23min 5s 7 80.8km 306.5km 0.47 self48 <	self41	<	14	7.26km	11min 5s	2	14.5km	459.4km	3.95
self48>1611.55km23min 5s780.8km306.5km0.47self48<	self45	>	15	5.01km	10min 34s	7	35.07km	655.1km	2.33
self48<1511.55km23min 3s223.09km74.7km0.40self49>115.96km9min 59s317.8km469.8km3.28self49<	self46	>	13	7.96km	15min 41s	5	39.8km	210.3km	0.66
self49>115.96km9min 59s317.8km469.8km3.28self49<	self48	>	16	11.55km	23min 5s	7	80.8km	306.5km	0.47
self49<105.96km9min 57s317.8km556.8km3.89self5>136.6km12min 13s319.8km308.5km1.94self5<	self48	<	15	11.55km	23min 3s	2	23.09km	74.7km	0.40
self5>136.6km12min 13s319.8km308.5km1.94self5<	self49	>	11	5.96km	9min 59s	3	17.8km	469.8km	3.28
self5<146.6km12min 15s639.6km619.7km1.95self50>114.99km9min 59s419.9km378.1km2.36self50<	self49	<	10	5.96km	9min 57s	3	17.8km	556.8km	3.89
self50>114.99km9min 59s419.9km378.1km2.36self50<	self5	>	13	6.6km	12min 13s	3	19.8km	308.5km	1.94
self50<115.05km10min 51s315.1km1008.7km8.32self51>1912.06km15min 56s672.4km1919.4km3.31self52>2211.2km18min 59s556.09km632.9km1.41self52<	self5	<	14	6.6km	12min 15s	6	39.6km	619.7km	1.95
self51>1912.06km15min 56s672.4km1919.4km3.31self52>2211.2km18min 59s556.09km632.9km1.41self52<	self50	>	11	4.99km	9min 59s	4	19.9km	378.1km	2.36
self52>2211.2km18min 59s556.09km632.9km1.41self52<	self50	<	11	5.05km	10min 51s	3	15.1km	1008.7km	8.32
self52<2211.25km18min 59s778.7km2118.2km3.36self54>86.14km8min 30s424.5km1352.1km6.88self54<	self51	>	19	12.06km	15min 56s	6	72.4km	1919.4km	3.31
self54>86.14km8min 30s424.5km1352.1km6.88self54<	self52	>	22	11.2km	18min 59s	5	56.09km	632.9km	1.41
self54<87.63km8min 30s322.9km715.4km3.90self56>1812.25km13min 13s336.7km3240.2km11.02self56<	self52	<	22	11.25km	18min 59s	7	78.7km	2118.2km	3.36
self56>1812.25km13min 13s336.7km3240.2km11.02self56<	self54	>	8	6.14km	8min 30s	4	24.5km	1352.1km	6.88
self56 < 18 12.22km 13min 13s 4 48.8km 3175.9km 8.11	self54	<	8	7.63km	8min 30s	3	22.9km	715.4km	3.90
	self56	>	18	12.25km	13min 13s	3	36.7km	3240.2km	11.02
self6 > 17 5.77km 11min 31s 6 34.6km 528.6km 1.9	self56	<	18	12.22km	13min 13s	4	48.8km	3175.9km	8.11
	self6	>	17	5.77km	11min 31s	6	34.6km	528.6km	1.9

self6	<	17	5.77km	11min 31s	2	11.5km	86.1km	0.93
self9	>	18	5.25km	10min 28s	2	10.4km	57.8km	0.69

Most of the digitized lines were self made as shown below:

Fig 21: Self Digitized share auto lines for the study area

4.2 Key Results (max. 500 words in bullets covering all activities)

4.2.1 Vulnerability Index

Social Vulnerability Index for various TAZ's (0 SVI – low Vulnerability ; 1 SVI – High Vulnerability) Access – (Higher value better access). The area based index for social vulnerability is formulated using personal socio economic status based indicators. Since the measure is on social vulnerability the developed index indicates advantaged areas through low index score whereas disadvantaged areas are indicated through high index score (Currie, 2010; Jaramillo.C., et.al., 2012). The index has been calculated for the 37 Traffic Analysis Zones (TAZs) within Greater Imphal Region.

The indicators chosen for development of index were proportion of female, proportion below 6, proportion of female kids below 6, proportion of illiterates, proportion of female illiterates, proportion of marginal workers, proportion of female main workers, proportion of non workers, proportion of female main workers, proportion of marginal other worker, proportion of female main other worker, proportion of marginal other worker, proportion of marginal other worker, proportion of main workers from agriculture, industrial and cultivation, proportion of main workers from household industries and cultivation female, proportion of marginal workers from industries and cultivation. Some of the indicators mentioned above form the subset of other indicators for eg, proportion of main workers essentially encompasses proportion of main 'other' workers and proportion of main agriculture laborers, industrial NMHS-2022 Final Technical Report (FTR) – Project Grant 33 of 94

and cultivation workers. The above mentioned indicators were initially processed to carry out the necessary descriptive analysis and from these a set of indicators were finally chosen as they confirmed to the requisite condition for carrying out PCA in SPSS. Table 4.4 shows the developed index values for various TAZ's using two different formulations available in literature.

TAZ	SVI	SVI_FIRST	Access	SVI-	SVI-	Access	DESCRIPTION
no		С		AORB	FCO	AorB	
					М		
1	0.51	0.539	297.71	Above	Above	above	Imphal (MCI) WARD NO0001
2	0.56	0.542	302.53	Above	Above	above	Imphal (MCI) WARD NO0002
3	0.37	0.363	301.84	Below	Below	above	Imphal (MCI) WARD NO0003
4	0.16	0.18	293.89	Below	Below	above	Imphal (MCI) WARD NO0004
5	0.51	0.508	1231.8	Above	Above	above	Imphal (MCI) WARD NO0005
6	0.35	0.392	284.44	Below	Below	above	Imphal (MCI) WARD NO0006
7	0.6	0.561	265.1	Above	Above	below	Imphal (MCI) WARD NO0007
8	0.29	0.195	274.08	Below	Below	below	Imphal (MCI) WARD NO0008
9	0.43	0.354	256.42	Below	Below	below	Imphal (MCI) WARD NO0009
10	0.49	0.439	233.09	Below	Below	below	Imphal (MCI) WARD NO0010
11	0.35	0.29	245.84	Below	Below	below	Imphal (MCI) WARD NO0011
12	0.35	0.24	242.93	Below	Below	below	Imphal (MCI) WARD NO0012
13	0.5	0.457	213.52	Above	Below	below	Imphal (MCI) WARD NO0013
14	0.06	0.072	238.36	Below	Below	below	Imphal (MCI) WARD NO0014
15	0.30	0.295	214.77	Below	Below	below	Imphal (MCI) WARD NO0015
16	0.39	0.312	191.25	Below	Below	below	Imphal (MCI) WARD NO0016
17	0.51	0.471	184.11	Above	Below	below	Imphal (MCI) WARD NO0017
18	0.64	0.566	223.02	Above	Above	below	Imphal (MCI) WARD NO0018
19	0.42	0.435	247.89	Below	Below	below	Imphal (MCI) WARD NO0019
20	0.57	0.542	242.39	Above	Above	below	Imphal (MCI) WARD NO0020
21	0.41	0.354	264.01	Below	Below	below	Imphal (MCI) WARD NO0021
22	0.76	0.88	268.89	Above	Above	below	Imphal (MCI) WARD NO0022
23	0.76	0.91	255.16	Above	Above	below	Imphal (MCI) WARD NO0023
24	0	0	264.21	Below	Below	below	Imphal (MCI) WARD NO0024
25	0.47	0.451	290.68	Below	Below	above	Imphal (MCI) WARD NO0025
26	0.62	0.625	266.67	Above	Above	below	Imphal (MCI) WARD NO0026
27	0.63	0.75	251.74	Above	Above	below	Imphal (MCI) WARD NO0027

Table 4.4 : The developed social vulnerability index

28	0.68	0.68	197.41	Above	Above	below	Imphal (MCI) WARD NO0028 (270117 - Langjing (CT) WARD NO0001-28, 801487 - Bijoy Govinda (OG) WARD NO0028 (Rural MDDS CODE:269934), 270123-Sagolband (Part) (CT) WARD NO0001 - 28 ,270124 - Takyel Mapal)
29	0.75	0.779	688.8	Above	Above	above	Imphal (MCI) WARD NO0029a (270312 - Porompat (CT) WARD NO0001-29, 270300 - Top Naoria- 29, 270301 - Kongba Nongthombam Leikai-29)
30	0.68	0.689	154.39	Above	Above	below	Imphal (MCI) WARD NO0030 (270313 - Torban (Kshetri Leikai) (CT) WARD NO0001 -30, 270314 - Khongman (CT) WARD NO0001 - 30, 270322 - Thongju (CT) -30)
31	0.75	0.745	188.13	Above	Above	below	Imphal (MCI) WARD NO0031 (270116 - Lamjaotongba (CT) WARD NO0001 - 31, 270115 - Sangaiprou Maning -31)
32	0.76	0.753	175.64	Above	Above	below	Imphal (MCI) WARD NO0032 (270 118 - Heinoukhongnembi -32, 270122 - Naoriya Pakhanglakpa (CT) WARD NO0001 -32, 270119 - Maibam Leikai -32)
33	0.38	0.427	162.21	Below	Below	below	Imphal (MCI) WARD NO0033 (270120 - Ahongsangbam Leikai - 33, 270121 - Sorokhaibam Leikai - 33, 801487 - Oinam Thingel (OG) WARD NO0029 (Rural MDDS CODE:269935) - 33)
34	0.72	0.671	186.96	Above	Above	below	Imphal (MCI) WARD NO0034 (270315 -Luwangsangbam (CT) WARD NO0001 , 270278-Matai ,

						270279 -Kontha Khabam ,270285 -		
						Lamlongei)		
0.94	1	221.14	Above	Above	below	Imphal (MCI) WARD NO0035		
						(270283 - Kairang Muslim- 35,		
						270280 - Kairang Meitei , 270281-		
						Khomidok, 270317 - Lairikyengbam		
						Leikai (CT) WARD NO0001 ,		
						270318 - Laipham Siphai (CT),		
						270319 - Khurai Sajor Leikai (CT)		
						WARD NO0001,270282 -Khurai		
						Konsam Leikai)		
0.55	0.609	230.55	Above	Above	below	Imphal (MCI) WARD NO0036		
						(801487 - Porompat Plan Area		
						(OG) WARD NO0030 (Rural		
						MDDS CODE:270324) -36, 801487		
						- Kongkham Leikai (OG) WARD		
						NO0031 (Rural MDDS		
						CODE:270325) -36, 270293 -		
						Kongkham Leikai (Part)-36, 270294		
						-Khaidem Leikai-36, 270320 -		
						Chingangbam Leikai (CT) WARD		
						NO0001-36,270286-Thangjam		
						Leikai-36)		
1	0.987	161.74	Above	Above	below	Imphal (MCI) WARD NO0037		
						(270276 - Achanbigei -37, 270316 -		
						Heingang (CT) WARD NO0001 -		
						37, 270284- Kontha Ahallup- 37)		
		0.55 0.609	0.55 0.609 230.55	0.55 0.609 230.55 Above	0.55 0.609 230.55 Above Above 0.100 0.100 0.100 0.100 0.100 0.100	0.55 0.609 230.55 Above Above below		

4.2.2 Trip Generation equations

Model Parameters	Log(HBW)	Log(HBE)	Log(HBO)
	(t-stat)	(t-stat)	(t-stat)
a ₁ - coefficient for log(other workers)	1.018(5.39)	*	*
a ₂ - coefficient for log(Literates)	*	0.712 (2.246)	*
a ₃ - coefficient for log(Population)	*	*	0.493 (1.714)
Constant	0.447(0.29)	1.815 (0.636)	3.897 (1.47)

Table 4.5 Productions:

Table 4.6 Attractions:										
Model Parameters	Log(HBW)	Log(HBE)	Log(HBO)							
	(t-stat)	(t-stat)	(t-stat)							
a ₁ - coefficient for log(other	2.518	*	*							
workers)	(1.262)									
a ₂ - coefficient for log(Literates)	*	1.572 (0.578)	*							
a ₃ -	*	*	4.270 (1.753)							
coefficient for log(Population)										
Constant	0.687 (3.116)	0.722 (2.445)	0.542 (1.713)							

4.2.3 Trip Distribution

Estimation of Gravitation Parameter

Work trips – Function form – $f(U) = a^*e^{(cU)}$; U=distance matrix Estimated Coefficients : a=3.615 c=-0.556 rating = 0.224 (figure 22)

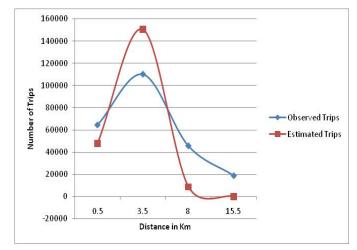


Figure 22: Observed vs estimated trip distribution for work trips

Education trips – Function form – $f(U) = a^*U^b^*exp(cU)$; U=distance matrix Estimated Coefficients : a=0.016, b=0.302, c=0.521 rating = 0.435 (figure 23)

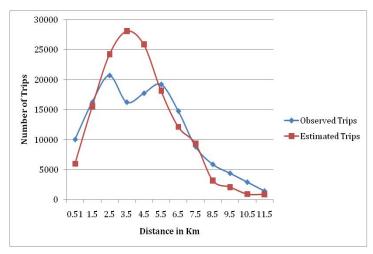


Figure 23: Observed vs estimated trip distribution for education trips

Other trips – Function form – $f(U) = a^*U^b^*exp(cU)$; U=distance matrix Estimated Coefficients : a=0.16, b=-1.13, c=0.264 rating = 0.762 (figure 24)

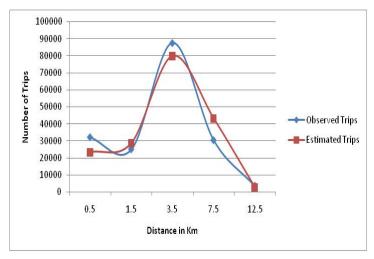


Figure 24: Observed vs estimated trips for other trips

4.2.4 Mode choice – Constant only model

Coefficients	Estimate	t – ratio	LL(start)	LL(final)	AIC	BIC
asc_car	0.365	5.658	-5955	-2200	4414.5	4456.6
asc_tw	0	NA				
asc_auto_hired	-4.5621	-25.765				
asc_van	-4.4248	-26.645				
asc_bus	-3.9139	-29.742				
asc_shareauto	-2.4712	-33.123				
asc_TataMagic	-6.6911	-13.402				
asc_NMT	-3.6108	-31.316				

Table 4.7 Work Trips

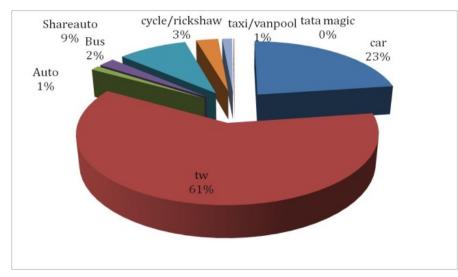


Fig 25 The mode choice as observed in the household data sampled work trips

Coefficients	Estimate	t – ratio	LL(start)	LL(final)	AIC	BIC
asc_car	-1.5191	-7.382	-2610.1	-1672.2	3358.3	3394.6
asc_tw	0	NA				
asc_auto_hired	-2.6169	-12.019				
asc_van	0.7992	10.877				
asc_bus	-1.9918	-12.072				
asc_shareauto	-0.2942	-3.242				
asc_TataMagic	-3.6722	-10.234				
asc_NMT	-2.8096	-11.806				

Table 4.8 Education Trips

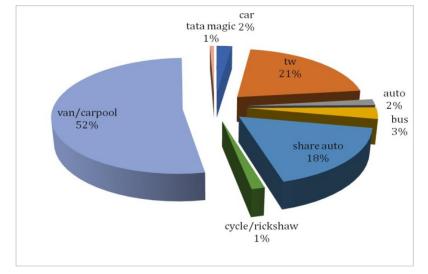


Fig 26 The mode choice as observed in the household data sampled education trips

Coefficients	Estimate	t – ratio	LL(start)	LL(final)	AIC	BIC
asc_car	-0.9280	-7,271	-4267.02	-2853.42	5720.8	5760.6
asc_tw	0	NA				
asc_auto_hired	-1.7744	-17.021				
asc_van	-3.0761	-16.6				
asc_bus	-2.6816	-17.372				
asc_shareauto	0.4500	8.158				
asc_TataMagic	-4.9015	-10.9				
asc_NMT	-0.7236	-10.072	1			

Table 4.9 Other Trips

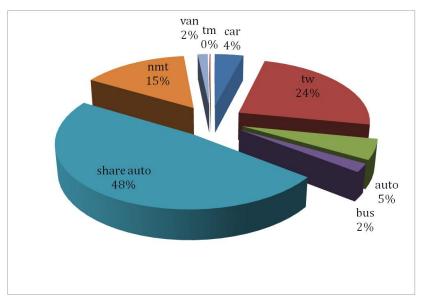


Fig 27 The mode choice as observed in the household data sampled other trips

Coefficients	Estimate	t – ratio	LL(start)	LL(final)	AIC	BIC
asc_PVEH	0	NA	-114.37	-55.82	117.65	126.97
asc_EVEH	-1.0752	-2.896				
b_t	-0.007	-3.732				
b_cost	5.665	6.458				

Table 4.10 Choice of E-AUTO

4.2.5 Classified traffic volume at select locations: The present Level of Service (LOS) and the anticipated LOS

S. No	Road	Peak Hour Time (hour)	Peak Hour Traffic (Veh/hr)	Peak Hour Traffic (PCU/hr)
1	Paona bazar to Uripok road	10:00-11:00 AM	2879	2315
	Uripok road to Paona bazar	16:00-17:00 PM	2815	2206
2	Singjamei to Imphal Bazar	16:00-17:00 PM	2398	1830
	Imphal Bazar to Singjamei	10:00-11:00 AM	3401	2581
3	Babupara to Sanjenthong	13:00-14:00 PM	1920	1584
	Sanjenthong to Babupara	17:00-18:00 PM	2311	1836
4	KeishamThong Bazar to Chingamakha Bazar	18:00-19:00 PM	2272	1670

	Chingamakha Bazar to KeishamThong Bazar	09:00-10:00 AM	1998	1453
5	DC Porampat to Lamlong Bazar	09:00-10:00 AM	910	664
	Lamlong Bazar to DC Porampat	18:00-19:00 PM	885	620
6	Mayaikaibi to Lukram Leirek	16:00-17:00 PM	524	402
	Lukram Leirek to Mayaikaibi	09:00-10:00 AM	616	486
7	Thiyam leikei to Sagolband	17:00-18:00 PM	789	567
	Sagolband to Thiyam leikei	16:00-17:00 PM	787	564

Table 4.12 Level of Service (LOS) for existing service:

S. No	Roadway	Peak hour (PCU/hr)	No of lanes	Divided or Undivided	Capacity (DSV/0.7)	V/C ratio	LOS
1	From Paona bazar to Uripok road	2315	6	Divided	3071	0.75	С
	From Uripok road to Paona bazar	2206			3071	0.72	С
2	From Singjamei To Imphal Bazar	1830	4	Divided	2571	0.71	D
	From Imphal bazar to Singjamei	al bazar to 2581	Divided	2571	>1	F	
3	From Babupara To Sanjenthong	1584	. 4	Divided	2071	0.76	D
	From Sanjenthong to Babupara	1836		Divided	2071	0.88	E
4	From KeishamThong Bazar to Chingamakha Bazar	1670	4	Divided	2071	0.8	D
	From Chingamakha bazar to KeishamThong	1453	•	Divided	2071	0.7	С
5	From DC Porampat To Lamlong Bazar	664	2	Undivided	857	0.78	D
	From Lamlong bazar to DC Porampat	620	_		857	0.72	D
6	From Mayaikaibi To Lukram Leirek	402	2	Undivided	857	0.46	В

	From Lukram Leirek to Mayaikaibi	486			857	0.56	С
7	From Sagolband to Thiyam leikei	564	2	Undivided	857	0.66	С
	From Thiyam Leikei to Sagolband	567	_	enanaea	857	0.66	С

Table 4.13 Econometric model for estimation of growth rate

Vehicles	Equation	R²	Co-efficient of (PCI/GDP)
Car/jeep	In Car = 1.0943 In PCI - 1.2039	0.898	1.0943
Bus	In Bus = -0.8294 In PCI +17.366	0.3153	-0.8294
Trucks	In Truck = 1.372 In GDP -3.3225	0.7425	1.372
TW	In TW = 0.4814 In PCI +7.0188	0.2743	0.4814
AR	In AR = 0.4948 In PCI+4.2208	0.2188	0.4948

Table 4.14 Growth rate of traffic in Imphal city for every 5 year period(Using compound rate model as per IRC 108-1996)

Vehicle type	Rate
ТW	4.89
Car	10.85
Bus	Negative
AR	4.93
Commercial vehicle (trucks)	8.5

	Table : 4.15 Anticipated traffic Volu	ume of various roadways o	f Imphal city	
S.		Anticipated Peak Hour Volume (2023-		
No	Roadways	2027)		
		(Veh/hr)	(PCU/hr)	
1	Paona bazar to Uripok road	3930	3243	
	Uripok road to Paona bazar	3867	3046	
2	Singjamei to Imphal Bazar	3767	2956	
2	Imphal Bazar to Singjamei	4750	3726	
3	Babupara To Sanjenthong	2763	2258	
	Sanjenthong to Babupara	3249	2677	

4	KeishamThong Bazar to Chingamakha Bazar	3118	2391
	Chingamakha Bazar to KeishamThong Bazar	ar to KeishamThong Bazar 2679 mlong Bazar 1191 DC Porampat 1186 am Leirek 747 ayaikaibi 882 m leikei 1075	2019
5	DC Porampat to Lamlong Bazar	1191	914
	Lamlong Bazar to DC Porampat	1186	866
6	Mayaikaibi To Lukram Leirek	747	556
	Lukram Leirek to Mayaikaibi	882	674
7	Sagolband to Thiyam leikei	1075	816
	Thiyam leikei to Sagolband	1079	816

Table 4.16 Projected LOS as per Indo-HCM

S.	_ .	Peak hour	No of	Divided or	Capacity	V/C	
No	Roadways	(PCU/hr)	lanes	Undivided	(DSV/0.7)	ratio	LOS
1	From Paona bazar to Uripok road	3243	6	Divided	3071	>1	F
	From Uripok road to Paona bazar	3046			3071	0.99	E
2	From Singjamei To Imphal Bazar	2956	4	Divided	2571	>1	F
-	From Imphal bazar to Singjamei	3726		Divided	2571	>1	F
3	From Babupara To Sanjenthong	2258	4	Divided	2071	>1	F
	From Sanjenthong to Babupara	2677			2071	>1	F
4	From KeishamThong Bazar to Chingamakha Bazar	2391	4	Divided	2071	>1	F
	From Chingamakha bazar to KeishamThong	2019			2071	0.97	E
5	From DC Porampat To Lamlong Bazar	914	2	Undivided	857	>1	F
•	From Lamlong bazar to DC Porampat	866	_		857	>1	F
6	From Mayaikaibi to Lukram Leirek	556	2	Undivided	857	0.64	С
	From Lukram Leirek to	674			857	0.79	D

	Mayaikaibi						
7	From Sagolband to Thiyam leikei	816	2	Undivided	857	0.95	E
	From Thiyam Leikei to Sagolband	816			857	0.95	E

4.2.6 Attributes for Customer satisfaction Index and Heterogeneous customer satisfaction index

Table 4.17 Attributes for Customer satisfaction Index and Heterogeneous customer satisfaction

index

		Importa	ince	Satisfa	ction
Description		Mean	Var	Mean	Var
the distance of the IPT/Bus stop from your origin (access					
distance) in terms of your usage of the IPT/Bus service	1	4.77	2.41	3.74	1.18
the distance of the IPT/Bus stop from your destination (egress					
distance) in terms of your usage of the IPT/Bus service	2	4.47	2.95	3.58	1.35
number of routes of IPT/Bus between your origin and					
destination in terms of your usage of the IPT/Bus service	3	4.49	2.20	3.85	1.63
the frequency of IPT/Bus services between your origin and					
destination in terms of your usage of the IPT/Bus service	4	4.37	2.80	3.66	1.72
the arrival of IPT/Bus services at the designated time					
(reliability) between your origin and destination in terms of your					
usage of the IPT/Bus service	5	4.75	2.66	4.05	1.84
the seat availability within an IPT/Bus service while travelling					
between your origin and destination in terms of your usage of					
the IPT/Bus service	6	5.29	2.57	4.57	2.18
the cleanliness within an IPT/Bus service while travelling					
between your origin and destination in terms of your usage of					
the IPT/Bus service	7	5.66	3.23	4.78	2.79
the safe driving practices of an IPT/Bus driver while travelling					
between your origin and destination in terms of your usage of					
the IPT/Bus service	8	5.90	3.74	4.64	3.05
the safety within an IPT/Bus service in terms of property					
theft/eve teasing while travelling between your origin and					
destination in terms of your usage of the IPT/Bus service	9	7.53	4.39	4.01	3.12
the safety at the IPT/Bus stop in terms of property theft/eve					
teasing while waiting for the service at the IPT/Bus stop in	10	7.63	5.21	3.84	2.87

terms of your usage of the IPT/Bus service					
the total travel time between an Origin and Destination while					
using an IPT/Bus service in terms of your usage of the IPT/Bus					
service	11	5.34	3.83	3.85	2.10
IPT stop/ bus stop ambiance (lighting, seating availability,					
shelter) in terms of determining your usage of the IPT/Bus					
service	12	4.78	3.10	3.99	1.86
the maintenance of IPT service in terms of number of					
breakdowns for determining your usage of the IPT/Bus service	13	4.34	4.13	3.89	2.96
ticket cost for determining your usage of the IPT/Bus service	14	4.66	2.96	4.24	2.07
ecological vehicle such as E-rickshaw or E-Auto or E-bus for					
your choice to commute	15	4.70	2.27	4.43	1.78
the space required for accommodating the goods that you are					
carrying within the service in determining your usage of the					
IPT/Bus service	16	4.76	2.20	4.22	2.15
the comfort of seats within an IPT/Bus service while travelling					
between your origin and destination in terms of your usage of					
the IPT/Bus service	17	4.70	2.92	4.13	2.33
the number of transfers of IPT/Bus service while travelling					
between your origin and destination in terms of your usage of					
the IPT/Bus service	18	4.64	2.79	3.92	2.16
the presence of a designated IPT /Bus stop in terms of usage					
of the IPT/Bus service	19	4.54	2.90	3.94	2.14
the total monthly expenditure spent travelling from your origin					
in terms of usage of the IPT/Bus service	20	4.45	2.84	3.94	2.13
the waiting time to assess an IPT service between your origin					
and destination	21	4.29	2.84	4.03	2.58
	I	1	1	l	

Table 4.18 Customer satisfaction Index and Heterogeneous customer satisfaction index

CSI 4.02 HCSI 4.14	
--------------------	--

4.3 Conclusion of the study (max. 500 words in bullets)

The study had aimed to assess the penetration of IPT services within the study area of Imphal. The initial aim was to assess the demand and supply for IPT service modeled as public transport services by deriving two separate indices however it was found that there are no designated stops for share autos/ other IPT services within each wards. The stops of the services are not fixed i.e. they stop as and where

a passenger wants to board or alight if occupancy is available. Else they are sheltered in stands where the commuters can board and alight. In context of the above to assess the penetration of IPT services to various public infrastructure POI's namely health care services and to understand the accessibility of the identified POI's by those who would be the captive riders to IPT namely the socially vulnerable group a social vulnerability index was developed for various wards within the study area. The gravitation parameters were calibrated to understand how the distance acts as a detriment to accessibility and finally the derived coefficients were used to identify interventions as mentioned in section 4.2 which indicated that the accessibility of wards 27,28, 31 32 30,18,20,22,23,36,25,26,34 and 37 with regard to reaching health care services needs to be improved.

It is concluded from the study as indicated by the low importance values given to various attributed of IPT services that the commuters in general are not aware of improved services that could be availed by them. It is therefore needed that the commuters be made aware of the latest as well as possible comforts that can be availed while commuting. It s concluded from the study that there is a scope for building bypass and thereby reducing the through traffic moving through the city. It is also concluded from the study that e-Autos/Buses can be introduced as a means of faster commute as well as a better ride option especially given that the current IPT services seem to not be able to cater to the 8:00 to 9:00 a.m. IPT demand (with high v by c ratio).

5 OVERALL ACHIEVEMENTS – <u>supporting documents to be attached.</u>

5.1 Achievement on Project Objectives/ Target Deliverables (max. 500 words)]

S#	Quantifiable	Monitoring Indicators*	Quantified Output/	Deviations, if any,
	Deliverables*		Outcome achieved	& Remarks thereof:
1	Ward maps obtained,	Ward maps obtained,	Ward maps	No deviations
	census data obtained.	census data obtained.	obtained, census	
	The details on	The existing ward	data obtained. The	
	operational	map has been	details on	
	characteristics of IPT	digitized. The road	operational	
	Digitization of existing	network has already	characteristics of	
	roadway infrastructure	been input in VISUM.	IPT	
	and various means of	The network details	Digitization of	
	transport in VISUM	along have been	existing roadway	
		provided for detailed	infrastructure and	
		analysis	various means of	
			transport in VISUM	
2	To collect the primary	Establishment of trip	Trip rates have	No deviations
	data with respect to	generation models	been achieved.	

	the travel	Conducting Trip	Trip distribution	
	characteristics and	Distribution	model has been	
	satisfaction level of	Conducting Mode	established with	
	commuters in Imphal	choice of commuters	gravitation	
	using household	using developed utility	parameters	
	survey and details on	functions	calibrated for the	
	existing load profile	Base year assignment	home based work,	
	along various routes	of private vehicle	educational and	
	and the occupancy	traffic and IPT traffic	other trips. Base	
	survey of the		year assignment	
	intermediate public		has been carried	
	transport services.		out for private and	
			IPT traffic	
3	To carry out empirical	Development of 'index	The social	Yes, deviations
	analysis of the	of transport social	vulnerability index	have been made
	collected data	needs' and 'Index of	has been	as the data
		IPT provision'	developed	collected was not
				sufficient to
				develop the index
				of transport social
				needs and index of
				IPT provision
				hence 'vulnerability
				index' has been
				developed.
4	To develop the model	IPT Indicators of need	Territory indicators	No deviations
	highlighting the	and provision by	in terms of	
	existing routes of	wards	Passenger	
	intermediate public		kilometres	
	transport network and		(PassKmTrav (AP))	
	to assess whether the			
	existing routing is			
	sufficient or not			

5.2 Interventions (max. 500 words) Nil

5.3 On-field Demonstration and Value-addition of Products, if any (max. 500 words)

The study involved skilled execution of several questionnaires which were duly filled by the field surveyors. These surveyors were repeatedly trained in order to make the evaluators understand the importance of the questions as well as the meaning of the question. The students were also initially trained to carry out various surveys.

5.4 Green Skills developed in in State/ UT (max. 500 words)

The study involved skilled execution of several questionnaires which were duly filled by the field surveyors. These surveyors were repeatedly trained in order to make the evaluators understand the importance of the questions as well as the meaning of the question. The students were also initially trained to carry out various surveys.

5.5 Addressing Cross-cutting Issues (max. 200 words)

The project was carried out majorly in the covid times therefore several cross cutting measures were carried out. The first being that the initially envisaged equipment namely the VBOX was not indented and the amount was reapportioned into field activities. Since the household survey was carried out after the second wave of COVID the people were apprehensive to let the enumerators into the house. Hence the help of DC Imphal was sought to carry out the household surveys. Some of the lines of share auto were identified using the help of students of Manipur Institute of Technology.

6 **PROJECT'S IMPACTS IN IHR –** <u>supporting documents to be attached.</u>

6.1 Socio-Economic impact (max. 500 words)

The developed gravitation parameters shall help in assessing the accessibility to various public infrastructure based point of interest. The study has shown the means of identifying wards having higher social vulnerability. The above highlighted methodologies as well as results shall help the stakeholders arrive at a learned decision on identifying wards wherein infrastructural interventions needs to be undertaken. It shall also help the stakeholders identify regions which have higher concentration of social vulnerability.

6.2 Impact on of Natural Resources/ Environment (max. 500 words)

The study recommends the use of E-Auto and buses for travelling in order to improve the congestion but also act as a deterrent to the onset of adverse environmental conditions.

6.4 Developing Mountain Infrastructures (max. 200 words)

The study recommends exploration of bypass of the through traffic and also the proposition of introducing e-Autos.

6.5 Strengthening Networking in State/ UT (max. 200 words)

The findings of the project are especially useful to field and practicing engineers. The study findings highlights the need for a bypass, the indicators that require improvement with respect to the operation of IPT services have been identified. This shall help the PWD to consider the option of building a bypass. The wards which require interventions in terms of accessibility to public infrastructure POI's, namely hospitals, have been identified. This enables the town planning division to look into the prospect of building the hospital infrastructure. The current LOS for select corridors within Imphal was computed along with the predicted LOS using growth rates. This again enables the PWD to look at the possibility of improving the LOS through infrastructural interventions. The study had also modeled a fare structure for E-Auto and has evaluated the proportion of people shifting to the service based on the assumptions of the assumed fare structure and operating speed. The study has evaluated the IPT services a public transport services and found the LOS for the same. The Directorate of Transport can look into the above proposal and consider the introduction of a new mode of service.

7 EXIT STRATEGY AND SUSTAINABILITY – *supporting documents to be attached.*

7.1 Utility of project findings (max. 500 words)

The findings of the project are especially useful to field and practicing engineers. The study findings highlights the need for a bypass, the indicators that require improvement with respect to the operation of IPT services have been identified. The wards which require interventions in terms of accessibility to public infrastructure POI's, namely hospitals, have been identified. The current LOS for select corridors within Imphal was computed along with the predicted LOS using growth rates. The study had also modeled a fare structure for E-Auto and has evaluated the proportion of people shifting to the service based on the assumptions of the assumed fare structure and operating speed. The study has evaluated the IPT services a public transport services and found the LOS for the same.

7.2 Other Gap Areas (max. 200 words)

The current data was collected predominantly when COVID fear was still prevalent hence the prediction accuracy of the mode choice model can be improved. Similarly the assignment results also can be improved with revised traffic counts.

7.3 Major Recommendations/ Way Forward (max. 200 words)

The major recommendation of the study include that the possibility of E-Auto instead of the currently operational diesel autos be initiated. In ward numbers ,28, 31 32 30,18,20,22,23,36,25,26,34 and 37 (figures 28 and 29) accessibility to key services such as health care needs to be improved. Possibility of enhancing the existing Bus fleet size needs to be explored as the growth rate of buses over the last decade is negative. This will also help reduce the v by c values on the lines of share autos as estimated. The possibility of introducing a bypass needs to be explored which shall pave way for faster services such as E-auto. Driver training programs towards safer driving practices as well as towards sensitization on needs of women safety issues needs to be promoted.

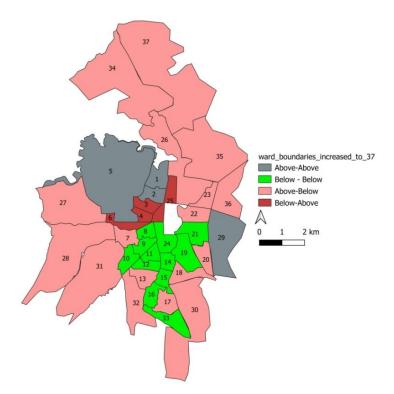


Fig 28: Cross classification based on ABISV (equation 1) and Accessibility Measure

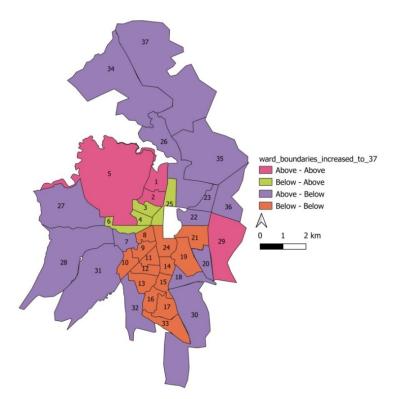


Fig 29: Cross classification based on ABISV (equation 2) and Accessibility Measure

7.4 Replication/ Upscaling/ Post-Project Sustainability of Interventions (max. 500 words)

It is necessary that periodic collection of traffic data be carried out to calibrate the existing four stage models. This shall ensure appropriate gravitation parameters development as well as appropriate identification of LOS of key roads. It is also advised that the trainings on women safety as well as proper driving procedures be periodically imparted to the drivers of IPT services.

8 REFERENCES/BIBLIOGRAPHY

- 1. Church, M. Frost, K. Sullivan 'Transport and social Exclusion in London', Transport Policy, 7 (2000), pp. 195-205.
- 2. World Development Report 2012, Gender Equality and Development Background paper, Gender And Mobility in the developing world.
- 3. A Gendered Perspective of the Shelter–Transport–Livelihood Link: The Case of Poor Women in Delhi
- Boisjoly, G., El-Geneidy, A., 2016. Daily fluctuations in transit and job availability: a comparative assessment of time-sensitive accessibility measures. J. Transp. Geogr. 52, 73–81. <u>https://doi.org/10.1016/j.jtrangeo.2016.03.004</u>.

- Boisjoly, G., Moreno-Monroy, A.I., El-Geneidy, A., 2017. Informality and accessibility to jobs by public transit: evidence from the Sao ~ Paulo Metropolitan Region. J. Transp. Geogr. 64, 89–96. <u>https://doi.org/10.1016/j.jtrangeo.2017.08.005</u>.
- Currie G., 2004. Measuring Spatial Distribution of Public Transport Needs and Identifying Gaps in the Quality of Public Transport Provision. Transportation Research Record: Journal of the Transportation Research Board, 1895, pp. 137–14.
- 7. I.T. Jolliffe; Principal Component Analysis, Second Edition, Springer publications.
- 8. Krishnan, V. 2013. Constructing an Area-based Socioeconomic Index : A Principal Components Analysis Approach .
- Seema Vyas, Lilani Kumaranayake, Constructing socio-economic status indices: how to use principal components analysis, *Health Policy and Planning*, Volume 21, Issue 6, November 2006, Pages 459–468, <u>https://doi.org/10.1093/heapol/czl029</u>
- Jackson, E.F., Siddiqui, A., Gutierrez, H. *et al.* Estimation of indices of health service readiness with a principal component analysis of the Tanzania Service Provision Assessment Survey. *BMC Health Serv Res* **15**, 536 (2015). <u>https://doi.org/10.1186/s12913-015-1203-7</u>
- Howe, L.D., Hargreaves, J.R. & Huttly, S.R. Issues in the construction of wealth indices for the measurement of socio-economic position in low-income countries. *Emerg Themes Epidemiol* 5, 3 (2008). <u>https://doi.org/10.1186/1742-7622-5-3</u>
- 12. Jaramillo, C., Lizárraga, C. and Grindlay, A.L., 2012. Spatial disparity in transport social needs and public transport provision in Santiago de Cali (Colombia). Journal of Transport Geography, 24, pp.340-357.
- Ilse Kotzee, Belinda Reyers, Piloting a social-ecological index for measuring flood resilience: A composite index approach, Ecological Indicators, Volume 60, 2016, Pages 45-53, https://doi.org/10.1016/j.ecolind.2015.06.018.
- 14. Sharma, Gajanand and Gopal R. Patil. "Public transit accessibility approach to understand the equity for public healthcare services: A case study of Greater Mumbai." Journal of Transport Geography (2021)
- 15. Comprehensive Mobility Plan Ahmedabad ; CRRI report , 2021
- 16. Eboli, L and Mazzulla G., 2009 " A New Customer Satisfaction Index for Evaluating Transit Service Quality". Journal of Public Transportation. Vol.12, No.3, 2009.
- 17. Parthan Kunhikrishnan, Karthik K. Srinivasan "Investigating behavioural differences in the choice of distinct Intermediate Public Transport (IPT) modes for work trips in Chennai city" Transport Policy Vol.61, 2018.
- 18. Nutley S, Indicators of transport and accessibility problems in rural Australia, Journal of Transport Geography volume 11 (1), 2003, 55-71.
- 19. Census
 Handbook
 East
 Imphal
 and
 West
 Imphal
 2011
 :

 https://censusindia.gov.in/census.website/ accessed 10.9.2021
 State
 State
 53 of 94

 NMHS-2022
 Final Technical Report (FTR) Project Grant
 State
 53 of 94

- 20. Economic
 Survey
 Manipur
 2020-21

 http://desmanipur.gov.in/files/NewsFiles/15Feb2021011944Economic%20Survey%20Manipur,%2

 02020-21.pdf
 last accessed 12.9.2022
- 21. Principal Component Analysis https://www.statstutor.ac.uk/resources/uploaded/principlecomponents-analysis.pdf
- 22. Tanja AJ Houweling, Anton E Kunst, and Johan P Mackenbach, Measuring health inequality among children in developing countries: does the choice of the indicator of economic status matter? International Journal for Equity in Health. 2003; 2: 8.
- 23. McKenzie DJ. 2003. Measure inequality with asset indicators. BREAD Working Paper No. 042. Cambridge, MA: Bureau for Research and Economic Analysis of Development, Center for International Development, Harvard University.
- 24. Hansen, W.G., 1959. How accessibility shapes land use. J. Am. Plan. Assoc. 25 (2), 73–76. https://doi.org/10.1080/01944365908978307.
- 25. Soegijoko BTS, Intermediate public Transportation for developing countries case study: Bandung, Indonesia, 1982, PhD thesis. Massachusetts Institute of Technology.

9 ACKNOWLEDGEMENTS

The study team gratefully acknowledges the support rendered by the Officials of the National Mission of Himalayan Studies (NMHS) under the Ministry of Environment, Forests and Climate Change, Government of India who sponsored the present study. The study team expresses sincere thanks to the Dr.Kireet Kumar (Nodal Officer, NMHS-PMU) and team. The suggestions given by NMHS Monitoring Committee helped to refine the study. The suggestions given by Dr. Kishor is thankfully acknowledged. The study team is grateful to our previous Director Prof. Satish Chandra (upto 17th January, 2022) Director Dr.Ranjana Aggarwal (Since 18th January, 2022) and present Director Prof Manoranjan Parida for providing complete support and guidance and for always motivating the study team. The study team is also thankful to other Scientists of the Transport Planning and Environment (TPE) division for providing technical inputs and project Monitoring and Evaluation (PME) division for providing support at different stages of the project. The study team would like to highly appreciate the support received from Research Council of CSIR-CRRI for multiple reviews and suggestions. The study team also likes to thank Prof. Basanta Kumar, Principal, Manipur Institute of Technology who has supported and encouraged in various aspects in the study. The study team is also grateful to all the stakeholders of the project in the state of Directorate of Secondary & Elementary Education (School), Department of Health Services, Remote sensing department, Home Department (Traffic), Deputy Commissioner Imphal West, Deputy Commissioner Imphal East for providing various inputs and providing secondary data. The study team would also like to thank each and every one who has helped during the course of this study. The study team acknowledges the contribution of all the stakeholder agencies contacted by the undersigned for the unconditional support extended. The contributions of the key stakeholders who have helped in secondary data collection are deeply appreciated.

APPENDICES

- Appendix 1 Details of Technical Activities
- Appendix 2 Copies of Publications duly Acknowledging the Grant/ Fund Support of NMHS
- Appendix 3 List of Trainings/ Workshops/ Seminars with details of trained resources and dissemination material and Proceedings
- Appendix 4 List of New Products (utilizing the local resources like NTFPs, wild edibles, bamboo, etc.)
- Appendix 5 Copies of the Supporting Materials like Manual of Standard Operating Procedures (SOPs) developed under the project
- Appendix 6 Details of Technology Developed/ Patents filled, if any
- Appendix 7 Any other

Annexure-III

Consolidated Assets Certificate
Assets Acquired wholly/ substantially out of Government Grants
(Register to be maintained by Grantee Institution)
Name of the Sanctioning Authority:National Mission on Himalayan Studies
1. SI. No
2. Name of Grantee Institution:CSIR – Central Road Research Institute
3. No. & Date of sanction order:
4. Amount of the Sanctioned Grant:44,00,000
5. Brief Purpose of the Grant:Research
6. Whether any condition regarding the right of ownership of Govt. in the property or other assets
acquired out of the grant was incorporated in the grant-in-aid Sanction Order:Not Applicable
7. Particulars of assets actually creditedNil Procured
or acquired
8. Value of the assets as on Nil Procured
9. Purpose for which utilised at present Not Applicable
10. Encumbered or not Not Applicable
11. Reasons, if encumbered Not Applicable
12. Disposed of or not Not Applicable
13. Reasons and authority, if any, for disposal Not Applicable
14. Amount realised on disposal Not Applicable

Any Other Remarks: _____

(HEAD OF THE INSTITUTION) (Signed and Stamped)

Annexure-IV

List or Inventory of Assets/ Equipment/ Peripherals

S. No.	Name of Equipment	Quantity	Sanctioned Cost	Actual Cost	Purchased	Purchase Details	
	Nil Procured						

(PROJECT INVESTIGATOR) (Signed and Stamped) (FINANCE OFFICER) (Signed and Stamped)

(HEAD OF THE INSTITUTION) (Signed and Stamped)

Annexure-V

Letter of Head of Institution/Department confirming Transfer of Equipment Purchased under the Project to the Institution/Department

NOT APPLICABLE

Τo,

The Convener, Mountain Division Ministry of Environment, Forest & Climate Change (MoEF&CC) Indira Paryavaran Bhawan Jor Bagh, New Delhi-110003

Sub.: Transfer of Permanent Equipment purchased under Research Project titled "...." funded under the NMHS Scheme of MoEF&CC – reg.

Sir/ Madam,

This is hereby certified that the following permanent equipment purchased under the aforesaid project have been transferred to the Implementing Organization/ Nodal Institute after completion of the project:

 1.

 2.

 3.

 4.

 5.

 6.

 7.

Head of Implementing Organization: Name of the Implementing Organization:

Stamp/ Seal:

Date:

Copy to:

 The Nodal Officer, NMHS-PMU, National Mission on Himalayan Studies (NMHS), G.B. Pant National Institute of Himalayan Environment (NIHE), Kosi-Katarmal, Almora, Uttarakhand-263643

Annexure-VI

Details, Declaration and Refund of Any Unspent Balance

Please provide the details of refund of any unspent balance and transfer the balance amount through RTGS (Real-Time Gross System) in favor of **NMHS GIA General** and declaration on the official letterhead duly signed by the Head of the Institution.

Kindly note the further Bank A/c Details as follows:

Name of NMHS A/c:	NMHS GIA General					
Bank Name & Branch:	Central Bank of India (CBI), Kosi	Bazar, Almora, Uttarakhand				
263643						
IFSC Code:	CBIN0281528					
Account No.:	3530505520 (Saving A/c)					

In case of any queries/ clarifications, please contact the NMHS-PMU at e-mail: nmhspmu2016@gmail.com