Template/Pro forma for Submission

NMHS-Himalayan Institutional Project Grant

NMHS-FINAL TECHNICAL REPORT (FTR)

Demand-Driven Action Research and Demonstrations

NMHS Reference No.:		Date of 3 0 1 1 2	0	2	1	
	NMHS-2017-18/MG-02/478		Submission: d d m m	У	У	У

PROJECT TITLE (IN CAPITAL)

INTEGRATED SYSTEM DYNAMICAL MODEL TO DESIGN AND TESTING ALTERNATIVE INTERVENTION STRATEGIES FOR EFFECTIVE REMEDIATION & SUSTAINABLE WATER MANAGEMENT FOR TWO SELECTED RIVER BASINS OF INDIAN HIMALAYA

Project Duration: from (22.12.2017) to (30.11.2021).

Submitted to:

Er. Kireet Kumar Scientist 'G' and Nodal Officer, NMHS-PMU National Mission on Himalayan Studies, GBP NIHE HQs Ministry of Environment, Forest & Climate Change (MoEF&CC), New Delhi E-mail: nmhspmu2016@gmail.com; kireet@gbpihed.nic.in; kodali.rk@gov.in

> Submitted by: [Prof. Shakil Ahmad Romshoo] [University of Kashmir, Hazratbal, Srinagar, J&K, India-190006] [*E-mail:* shakilrom@uok.edu.in]

GENERAL INSTRUCTIONS:

- 1. The Final Technical Report (FTR) has to commence from the start date of the Project (as mentioned in the Sanction Order issued by NMHS-PMU) till completion of the project duration. Each detail has to comply with the NMHS Sanction Order.
- 2. The FTR should be neatly typed (in Arial with font size 11 with 1.5 spacing between the lines) with all details as per the enclosed format for direct reproduction by photo-offset printing. Colored Photographs (high resolution photographs), tables and graphs should be accommodated within the report or annexed with captions. Sketches and diagrammatic illustrations may also be given detailing about the step-by-step methodology adopted for technology development/ transfer and/ or dissemination. Any correction or rewriting should be avoided. Please provide all information under each head in serial order.
- 3. Any supporting materials like Training/ Capacity Building Manuals (with detailed contents about training programme, technical details and techniques involved) or any such display material related to project activities along with slides, charts, photographs should be brought at the venue of the Annual Monitoring & Evaluation (M&E) Workshop and submitted to the NMHS-PMU, GBP NIHE HQs, Kosi-Katarmal, Almora 263643, Uttarakhand. In all Knowledge Products, the Grant/ Fund support of the NMHS should be duly acknowledged.
- 4. The FTR Format is in sync with many other essential requirements and norms desired by the Govt. of India time-to-time, so each section of the NMHS-FTR needs to be duly filled by the proponent and verified by the Head of the Lead Implementing Organization/ Institution/ University.
- 5. Five (5) hard-bound copies of the Project Final Technical Report (FTR) and a soft copy of the same should be submitted to the **Nodal Officer**, **NMHS-PMU**, **GBP NIHE HQs**, **Kosi-Katarmal**, **Almora**, **Uttarakhand**.

The FTR is to be submitted into following two (02) parts:

Part A – Project Summary Report

Part B – Detailed Project Report

In addition, the Financial and other necessary documents/certificates need to be submitted along with the Final Technical Report (FTR) as follows:

Annexure I	Consolidated and Audited Utilization Certificate (UC) & Statement of Expenditure (SE) , including the interest earned for the last Fiscal year and the duly filled GFR-19A (with year-wise break-up).
Annexure II	Consolidated Interest Earned Certificate
Annexure III	Consolidated Assets Certificate showing the cost of the equipment in
	Foreign/ Indian currency, Date of Purchase, etc. (with break-up as per the
	NMHS Sanction Order and year wise).
Annexure IV	List of all the equipment, assets and peripherals purchased through the
	NMHS grant with current status of use, including location of deployment.
Annexure V	Transfer of Equipment through Letter of Head of Institution/Department
	confirming the final status of equipment purchased under the Project.
Annexure VI	Details, Declaration and Refund of any Unspent Balance transferred through Real-Time Gross System (RTGS)/ PFMS in favor of NMHS GIA General

NMHS-Final Technical Report (FTR) template

Demand-Driven Action Research Project

DSL: Date of Sanction Letter	

2	2	1	2	2	0	1	7
d	d	m	m	у	у	у	у

DPC: Date of Project Completion									
	3	0	1	1	2	0	2	1	
	d	d	m	m	у	у	у	у	

Part A: Project Summary Report

1. Project Description

i.	Project Grant Ref. No.:							
ii.	Project Category:	Small Gran	t	Medium Grar	nt 🗸	Large Grant		
iii.	Project Title:	Integrated System dynamical model to design and Testing Alternative intervention strategies for Effective Remediation & Sustainable water Management for two selected river basins of Indian Himalaya						
iv.	Project Sites (IHR States/ UTs covered)	Upper Jhelum watershed (Jammu and Kashmir), Kosi watershed (Kumaun Region, Uttarakhand)						
	(Location Maps attached):							
V.	Scale of Project Operation:	Local		Regional	~	Pan-Himalayan		
vi.	Total Budget:	2.47 Cr (2,4	17,15,68	80/-)				
vii.	Lead Agency:	Departmen	t of Eart	h Science, Uni	versity	of Kashmir, Srina	gar	
	Lead PI/ Proponent:	•	t of Eart of Kashr	l Romshoo, h Sciences, nir, Hazratbal,	Srinaga	ar Kashmir,		
	Co-PI/ Proponent:	Co-PI: Dr. KV Ramesh, Principal scientist, CSIR 4PI, Bangalore Co-PI: Dr. V Rakesh, Senior scientist, CSIR 4PI, Bangalore Co-PI: Dr Sandipan Mukherjee, GBPNIHESD, Almora, Uttrakhand						
viii.	Implementing Partners:	 CO-PT. DI Sandipan Mukherjee, GBPNIHESD, Almora, Ottrakhand Department of Earth Sciences, Hazratbal, Srinagar, Kashmir Jammu and Kashmir. CSIR-Fourth Paradigm Institute (CSIR 4PI), NAL Belur Campus, Bangalore. G.B. Pant National Institute of Himalayan Environment & Sustainable Development (GBPNIHESD). 						

De	ey Persons (Contact etails, Ph. No., E-	PI: Prof. Shakil Ahmad Romshoo, University of Kashmir, J&K shakilrom@uok.edu.in
ma	ail):	Co-PI: Dr. KV Ramesh, Principal scientist, CSIR 4PI, Bangalore ramesh.c4pi@nic.gov.in
		Co-PI: Dr. Sandipan Mukherjee, Scientist – D, G.B. Pant National Institute of Himalayan Environment. Email: <u>sandipan@gbpihed.nic.in</u>

2. Project Outcomes

2.1. Abstract (not more than 250-300 words) [*it should include background of the study, aim, objectives, methodology, approach, results, conclusion and recommendations*]

The project aimed to develop, test, and validate a System Dynamics Model of the Upper Jhelum and Kosi Basins in the Himalaya, focusing on the water budget, forest and agro-ecosystem under various environmental and socio-economic scenarios. A comprehensive data repository was created encompassing hydrology, meteorology, socio-economics, land use/land cover (LULC), water quality, soil quality, soil texture, present and future climate for both the upper Jhelum and Kosi basins. This data facilitated the analysis of various land surface and atmospheric variables using modeling frameworks. Climate models were used to determine plausible climate change scenarios, while LULC and socio-economics trends were studied and projected to the end of the century alongside with hydrological balance studies to assess streamflow and its components.

Key findings in the UJB reveal a decreasing trend in agriculture, forest, and glacier cover from 1981 to 2019, contrasted by increases in horticulture, built-up areas, and degraded forests. No significant changes were observed in classes, such as exposed rock, snow, scrub and pasture. Moreover, the observed and projected temperature data from the 6 CMIP3 models suggested that the GFDL CM2.1 simulations are more promising. Temperature projections indicated a rise of ~4.0oC to ~7.0oC under the three climate change scenarios by the end of 21st century varies from. The hydrological balance revealed baseflow as the largest contributor (38.39%), followed by snow-melt (31.97%), rainfall (22.79%) and glacier-melt (10.42%). Precipitation projections showed insignificant increase under climate scenarios. The updated Köppen-Geiger climate classification scheme identified 10 main climate zones in the UJB using baseline climate data. Socio-economic data analysis, showed a significant increase in the total population and population density and is projected to increase by significantly by the end of 21st century.

In the Kosi watershed, GBPNIHE focused on changes in winter wet days and forest fragmentation. Sub-watersheds were prioritized using morphometric parameters and machine

learning models were developed to predict spring high-flows. Data on hydrometeorology, spring distribution, discharge properties, and socio-economic aspects were compiled. A data-driven model for predicting spring high-flows and a Cellular Automata-based dynamical model for forest resources were also developed. Additionally, water demand and supply data for 427 households in the Suyal sub-watershed, monthly spring discharge and water quality data for six springs, and surface meteorological data for were prepared. The study suggests a significant reduction in winter wet days, emphasizing the need for community-level climate change adaptation and improved water resource management. The models provide actionable insights for targeted plantation activities and improved resource allocation.

The project made an assessment of the outcome of alternate policy and technological interventions for river conservation and associated ecosystems and stakeholder capacity building for informed water management decisions.

2.2. Objective-wise Major Achievements

S. No.	Objectives	Major achievements <i>(in bullets points)</i>
1.	Development,	1.
	Testing and	(i) Estimated Spatiotemporal variability and change in seasonal
	validation of a	leaf area coverage to understand the ecosystem behaviour and estimation of evapotranspiration.
	System Dynamics	(ii) Crop phenology (wheat) was estimated using multispectral
	Model of the Upper	satellite images.
	Jhelum and Kosi	(iii) Developed data models for crop production based on
	Basins.	traditional as well as deep learning methods on past data (iv) Developed a machine learning based tool to classify High resolution satellite images from Landsat and Sentinel. 2.
		 (i) SWAT hydrological model simulations were conducted for KOSI River basin for the period 1982-2017 with 25 sub-basins. (ii) SWAT hydrological model simulations were made for UJB River basin for the period 1982-2017 with 44 sub-basins. (iii) High resolution WRF – canopy model simulations are conducted for Kosi and upper Jhelum region. (v) DSAT and STICS Crop model was set up for Wheat in the Kosi basin (iv) Field survey cum data collection for Kosi basin was conducted during June 2019 and upper Jhelum basin in 2021. (vi) Simplified SDM has been developed in this project.

2.	Projections of water	Generated the digital database including: Hydrology,
	budget, Climate	Meteorology, Land use and Land cover, Soil and Socio-
	change, and agro-	economic parameters at watershed level in the UJB.
	ecosystem under	Quantified the past and present land system changes in UJB
	different	from 1981– 2019 and future LULC projections for UJB up to
	environmental and	2100.
	socio-economic	Generated Socio-economic Projections for UJB up to 2100.
	scenarios	Water balance assessment of UJB.
	•	Generated present and future climate scenarios for UJB ending
		21 st century
	4	Generated revised climate zonation of UJB.
		Water usage and socio-economic survey in Kosi- watershed
		Monthly monitoring of discharge and physico-chemical data
		analysis during 2019-2021 period.
		Crop-vegetation survey for Rice and wheat yield, phenology, soil
		properties and management practices within the Kosi
		watershed.
	ſ	• Observations and data quality control of air, climate, soil and
		water environment in the Kosi watershed.
	ſ	• The particulate matter (PM10) data compilation was completed
		for 2020-21.
	•	Quantifying past land and water resources changes and
		developing data models and digital database:
	•	Quantified the expected changes in winter-season wet day
		climatological patterns for Himalayas during 2020–2099 in
		comparison to a baseline period of 1980–2000 under two
		different warming scenarios, RCP 4.5 and RCP 8.5, using
		CSIRO-CORDEX simulations from five GCMs.
	ſ	• The model ensemble predicted area-averaged reduction in the
		frequency of wet days by 0.3 to 1.0 day by the end of this century.
	4	 It is also observed that the Himalayan region within the range of
		1000–2500 m above sea level may experience a decline in
		winter-season wet days by up to 0.8 to 3.2 days under the
		warming scenarios of both RCP 4.5 and 8.5.

	 The forest fragmentation statistics, estimated using Fragstat module of Arc-GIS (v. 2014) and LULC data generated from the RGB and NIR band with 30 m resolution of Landsat indicated increase in the forest core area (i.e. forest area > 500 acre) from 201.7 km2 in 1999, 247.4 km2 in 2008 and 368.2 km2 in 2017 representing better prospect for water augmentation. A GIS based study was conducted to identify and prioritized the sub-watersheds of Kosi watershed based on the compound factor analysis of 10 morphological parameters related to drainage network, basin geometry, and drainage texture. The sub-watersheds were categorized into high, medium and low level of priority for conservation of natural resources leading to sustainable watershed management. The Cellular Automata based forest cover prediction till 2030 indicated that the forest cover area over Kosi watershed is expected to increase by 82.7 km² from the forest cover areas of 2017. A data driven model was developed for predicting spring high flows of Kosi watershed. The model development was carried out using 05 machine learning classifiers with multiple geo-climatic predictors affecting spring discharges. The following ecological Indicators were estimated by the CSIR: Annual water yield for 2001-2019 Water balance Baseflow Suf-ace Runoff Sub-basin scale Actual evapotranspiration Sediment export and deposit Soil loss Carbon storage Nutrient transport Normalized Difference Vegetation Index (NDVI) Leaf Area Index (LAI)
--	---

3. Assessment of the outcome of alternate policy a	Upper Jhelum and Kosi basin
technological interventions for conservation of river and associated ecosystems.	 enhanced human-natural resource management Samples/ measurements on crop phenology/ plant growth, soil & grain samples from crop fields wheat/ paddy
4. Capacity and awareness build of stakeholders f informed decisio making on water management.	 n • Workshop on "System Dynamical modelling for livelihood and

Note: Further details may be summarized in DPR Part-B, Section-5. Supporting materials may be enclosed as annexure/ appendix separately to the FTR.

2.3. Outputs in terms of Quantifiable Deliverables*

S. No.	Quantifiable Deliverables*	Monitoring Indicators*	Quantified Output/ Outcome achieved	Deviations made, if any, & Reason thereof:
1.	Observation of air,	Precipitation and	 Long term trends of 	-
	climate, soil and	temperature from the	precipitation, temperature, and	
	water	IMD; Streamflow from	other meteorological	
	environment:	the Irrigation and	parameters	
	planning, design	Flood Control Dept.	 Soil quality 	
	of sampling	(IFC); Soil quality from	Water levels	
	locations and	SKUAST; Particulate	 Particulate matter 	
	observations	matter		
3.	Quantifying past	LULC of the years	Past to present LULC (1981-	-
	land and water	1981, 1992, 2001,	2019) was generated and	
	resources	2013 and 2019;	dynamics were studied;	
	changes and	Streamflow changes	The streamflow trend over the	
	developing data	from 1971- 2018	past five decades were studied in	
	models		the UJB which shows a	
			significant decline in streamflow	
			at the three stations	
4.	Development of	Hydrology,	Generated the digital database in	-
	digital database	Meteorology, Land	GIS environment of Hydrological,	
	on land, water	use and Land cover,	Meteorological, Land use and	
	and other	Soil and various	Land cover, Soils and Socio-	
	resources	Socio-economic	economic parameters at	
	(including socio-	parameters	watershed level in both the both	
	economic) at		the basins	
	watershed scale			
5.	Developing	UJB:	UJB:	-
	reliable high	-Past-present climate	-The most plausible climate	
	resolution past	and Future climate	change scenarios were	
	climate and future	scenarios; Present	developed under two climate	
	climate scenarios	and future climate	change scenarios: RCP4.5 and	
	for the two	zonation	RCP8.5 ending 21 st Century	

	selected habitats	KOSI:	-The Köppen-Geiger climate	
	over the Indian	-2 high-resolution		
	Himalaya	climate scenarios	projected to the end of 21st	
		developed based on	century.	
		the past database/	KOSI:	
		sets; 3 high-resolution	06 numbers of models from	
		future scenario	CSIRO-CORDEX simulations	
		prediction/	were used for dynamical	
		visualization based on	analyses of winter wet days	
		the data dynamics	under RCP 4.5 and 8.5 climate	
		analysis.	change scenarios ending 21 st	
			century.	
6.	Assessment of	Water balance	Water balance studies and -	
	hydrological		partitioning of streamflow	
	budget for two		components into snow-ice melt,	
	basins using		baseflow and rain in the UJB.	
	numerical model		Annually, snowmelt provides the	
	that include		largest contribution, while glacier	
	surface, snow-ice		melt contributes the least.	
	melt, ground		Baseflow is the primary	
	water and stream		contributor during the	
	flow, etc.		accumulation season. During the	
			snowmelt season, it's the	
			snowmelt, while during the	
			glacier-melt season, glacier melt	
			contributes the most at higher	
			elevations, with baseflow	
			prevailing in lower reaches.	
7.	Cellular automata	LULC projections;	Calibration of the Linear Growth -	
	(CA), and Socio-	Socio-economic	Model was done for socio-	
	economic models	projections	economic projections; Cellular	
	outlook: Model		automata (CA) model was	
	Calibration		calibrated for LULC projections.	

8.	System	•	Monitoring and	• Soil and crop phenology	
	Dynamical models		comparison of the	assessed for the three	
	(by integrating		baseline information	experimental sites for Paddy	
	water budget,	•	Several System	and Wheat crop.	
	Crop models,		Dynamics Models	• 250m resolution 8day NDVI &	
	socio-economic		tested/ customized	EVI data generated for the	
	models, WRF-		for the Himalayan	period 2002-2020	
	land-canopy		watersheds;	Remote sensing-based used to	
	model and etc.) for	•	A number of high-	estimate system variables.	
	2 Himalayan		resolution climate	• 500m 16-day leaf area index	
	watersheds for		scenarios	data generated for the period	
	effective		developed based on	2002-2020	
	remediation &		the past database;	• Field data collection for soil	
	sustainable water	•	A number of high-	samples, springs. Leaf Area	
	management;		resolution future	Index (LAI), plant phenology,	
			scenario prediction/	soil Moisture and W.E.T.	
			visualization based	measurement	
			on the data	• Input data at 4km developed	
			dynamics analysis;	for the period 2001-2016	
		•	Outputs of	Crop vegetation monitoring	
			Decision-support	and phenology carried out for	
			System developed,	Wheat and Apple crop for the	
			integrating SDM on	period 2002-2019 in Kosi and	
			GIS platform;	UJB respectively	
		•	A number of Policy	Hydrological model simulation	
			guidelines and	is done for 1979-2019 for KOSI	
			Legislative	and upper Jhelum basin River	
			mechanisms:	basin.	
			prepared and/ or	Multivariate deep learning-	
			communicated	based process models are	
				developed	
				• LULC was generated for	
				estimating for variability and	
				trend (both annual and	
/HS-202			Report (FTR) – Project Grant	seasonal timescales)	12 of 383

			 Deep learning-based LAI estimation model developed High resolution WRF – canopy model is customized for Kosi and upper Jhelum region simulations are complete. Crop phenology estimation for 2002-2020 is complete. Ecological Indicator for the period 2001-2020 has been simulated for the following parameters: Annual water yield for 2001- 2019 Sub-basin scale Actual evapotranspiration Sediment export and deposit Soil loss Carbon storage Nutrient transport
9.	Developing a decision support system by integrating SDM on GIS platform.	 Sustainable water management, climate adaptation strategies, and policy interventions. Future projections of land use, water resources, and socio- economic trends up to 2100. Climate classification schemes and hydrological budgets 	 A pilot DSS was developed for a small watershed, combining SDM and GIS to visualize and test intervention scenarios. It integrates multiple models, including hydrological, climate, and socio-economic models, to assist in evaluating and managing water resources and land use under various scenarios.

		 Insights for adaptive policy formulation, resource allocation, and climate-resilient strategies. 	 These outputs and performance indicators demonstrate the DSS's utility in addressing water and land resource challenges in the Upper Jhelum Basin and Kosi Watershed, providing a framework that can be replicated in similar basins. 	
10.	Documentation/ Publications	Climate change scenarios and climate zonation; Land surface processes (The publications are provided as annexure to this report)	 Land surface processes: Ipsita, P., Rakesh, V., Singh, R., & Mohapatra, G. N. (2023). Impact of different land use data on WRF model short range forecasts during pre-monsoon and monsoon seasons in India. Urban Climate, 49, 101558. Singh, R., Rakesh, V., & Varma, A. K. (2023). Association of winter vegetation activity across the indo-gangetic plain with the subsequent Indian summer monsoon rainfall. Climate Dynamics, 60(7-8), 2245-2259. PK, V. G., KV, R., & Rakesh, V. (2022). Improved Learning by Using a Modified Activation Function of a Convolutional Neural Network in Image 	

Classification. Available at
SSRN 4185660.
4. Altaf, S., & Romshoo, S. A.
(2022). Flood vulnerability
assessment of the Upper
Jhelum Basin using HEC-
HMS model. Geocarto
International, 37(26), 14699-
14720.
5. Romshoo, S. A., Yousuf, A.,
Altaf, S., & Amin, M. (2021).
Evaluation of Various DEMs
for Quantifying Soil Erosion
under Changing Land Use
and Land Cover in the
Himalaya. Front. Earth
Sci, 9, 782128.
6. Marndi, A., Ramesh, K. V., &
Patra, G. K. (2021). Crop
production estimation using
deep learning
technique. Current
Science, 121(8), 1073.
7. Nair, R. V., Vasanthakumar,
R. K., & Rao, E. V. S. P.
(2021). An Assessment of
Potential Economic Gain
from Weather Forecast
Based Irrigation Scheduling
for Marginal Farmers in
Karnataka, Southern State
in India. <i>Agricultural</i>
<i>Sciences</i> , <i>12</i> (5), 503-512.
8. Ramesh, K. V., Rakesh, V.,
& Rao, E. V. S. (2020).

,		
	Application of big data	
	analytics and artificial	
	intelligence in agronomic	
	research. Indian Journal of	
	Agronomy, 65(4), 383-395.	
	Climate change scenarios and	
	climate zonation:	
	9. Purwar, S., Rakesh, V.,	
	Bankar, A., & Mohapatra, G.	
	N. (2023). Relationship of	
	height and intensity of low-	
	level jet stream with Indian	
	summer monsoon	
	rainfall. Theoretical and	
	Applied Climatology, 151(1-	
	2), 785-799.	
	10. Romshoo, S. A., & Marazi,	
	A. (2022). Impact of climate	
	change on snow	
	precipitation and streamflow	
	in the Upper Indus Basin	
	ending twenty-first	
	century. Climatic	
	Change, 170(1-2), 6.	
	11. Kumar, V. K., KV, R., &	
	Rakesh, V. (2022).	
	Optimizing Lstm and Bi-	
	Lstm Models for Multivariate	
	Time Series Prediction and	
	Performance Comparison	
	with Classical Statistical	
	Models. Available at SSRN	
	4129886.	

	12.	Mohapatra, G., Rakesh, V.,	
		Purwar, S., & Dimri, A. P.	
		(2021). Spatio-temporal	
		rainfall variability over	
		different meteorological	
		subdivisions in India:	
		analysis using different	
		machine learning	
		techniques. Theoretical and	
		Applied Climatology, 145(1-	
		2), 673-686.	
	13.	Johny, A., & Ramesh, K. V.	
		(2020). Equatorial Indian	
		Ocean Response during	
		Extreme Indian Summer	
		Monsoon Years Using	
		Reliable CMIP5	
		Models. Ocean Science	
		Journal, 55, 17-31.	
	14.	Romshoo, S. A., Bashir, J.,	
		& Rashid, I. (2020). Twenty-	
		first century-end climate	
		scenario of Jammu and	
		Kashmir Himalaya, India,	
		using ensemble climate	
		models. Climatic	
		change, 162, 1473-1491.	
	15.	Johny, A., & Ramesh, K. V.	
		(2019). Developing reliable	
		climate projections for the	
		continental monsoon	
		regions. Journal of Climate	
		<i>Change</i> , <i>5</i> (2), 51-71.	

(*) As stated in the Sanction Letter issued by the NMHS-PMU.

2.4. Strategic Steps with respect to Outcomes (in bullets)

S. No.	Particulars	Number/ Brief Details	Remarks/
			Attachment
1.	New Methodology/ Technology	A new climate classification scheme	The details
	developed, <i>if any:</i>	developed in this research Deep learning	of the
		classification algorithm;	classificatio
		Deep learning-based model for crop yield	n scheme
			are
			published in
			paper
			(please see
			Appendix
			1&2)
2.	New Ground Models/ Process/	New land surface processes were tested	The details
	Strategy developed, if any:	and simulated using the following models:	of the
		 Cellular automata (CA) model for land 	classificatio
		projections	n scheme
		 Linear Growth Model 	are
		 SPHY model for streamflow partitioning 	published in
		 Machine learning model for predicting 	various
		spring high-flows of central Himalaya	papers
		 SWAT for upper Jhelum and KOSI 	(please see
		 High resolution WRF – canopy model 	Appendix
		 LSTM and Bi-LSTM models for crop 	1&2)
		production	
		 Ecological Indicator simulation 	
		 Watershed Scenario models 	
3.	New Species identified, if any:	-	-
4.	New Database established, if	The following high-resolution databases	-
	any:	on various aspects of natural	
		resources, processes and indicators	
		were digitized and developed for	
		analysis in GIS environment.	

		 A time series of meteorological 	
		parameters in Upper Jhelum and Kosi	
		basins	
•		• Land use/ land cover- UJB and Kosi	
		basin	
		Watershed-wise socio-economic	
		database- UJB and Kosi basin	
		 Revised climate zonation in UJB 	
		Water quality- UJB and Kosi	
		watersheds	
		Spring digital database for Suyal sub	
		watershed (Kosi).	
		Surface meteorological database of	
		Kosi-Katarmal.	
		• A time series of streamflow	
		measurements in the UJB and Kosi	
		basins	
		• Apart from this, 3000+ Leaf Area Index	
		(LAI) measurements, 124 Soil Moisture	
		Sensor measurements and 124 W.E.T	
		sensor measurements were taken.	
		• Ecological Indicators are simulated at	
		30m resolution	
5.	New Patent, if any:	-	-
	I. Filed (Indian/ International)	-	-
	II. Technology Transfer, <i>if</i> any:	-	-
6.	Others, <i>if any</i>	-	-

Note: Further details may be summarized in DPR Part-B, Section-5. Supporting materials may be enclosed as annexure/ appendix separately to the FTR.

3. New Data Generated over the Baseline Data

S. No. New Data Details	Status of Existing	Additionality and Utilisation
	Baseline	New data

1.	LULC data from 2021-2100 for UJB	1980- 2019	Simulation modelling
2.	Watershed wise Socio- economic database from 2021- 2100 for UJB	1981- 2011	For projections of population density and total population at the basin level
3.	LULC of Kosi watershed	-	Simulation modelling
5.	Streamflow data of UJB from 1971-2018	-	For past to present streamflow trend analysis
6.	Precipitation data of UJB from 1980-2018	-	Simulation modelling
7.	Soil quality data of UJB	-	Simulation modelling
8.	Soil texture data of UJB	-	Simulation modelling
9.	Water quality data of UJB and Kosi watersheds	-	Simulation modelling
10.	3000+ Leaf Area Index (LAI) measurements, 124 Soil Moisture Sensor measurements and 124 W.E.T sensor measurements	-	Simulation modelling
11.	Streamflow data of Kosi	-	Simulation modelling
12.	Particulate matter data from 2011-present	Previously not available	For determining the status of air quality
13.	Updated Koppen-Gieger zonation for UJB	Baseline data 1980-2019	New climate classification for Jammu, Kashmir and Ladakh Himalaya
14.	Future climate zonation for UJB	Projected Koppen-Gieger zonation	climate classification for Jammu, Kashmir and Ladakh Himalaya by 21 st century under climate change
15.	Water usage and socio-	Water demand data for	Water Supply and Demand for
	economic data in Kosi- watershed	developing system dynamical model	SDM model
16.	Mapping of 113 springs within Kosi watershed	-	A digital database of geo-tagged springs was prepared.
MHS-202	2 Final Technical Report (FTR) -	– Project Grant	20 of 383

17.	6 springs within Kosi-watershed are monthly monitored and compiled for January, 2019 to	Monthly monitored spring Monthly monitored spring data data used for developing were used in a research spring high-flows using publication under review. machine learning classifiers.
18.	of Kosi- katarmal	Daily meteorological data Meteorological Monograph Part for Rainfall, air I and II of the data were temperature, relative compiled and published by humidity, wind speed and GBPNIHE. net radiation observed at the 32 m profiler of GBPNIHE during 2012- 2021 were compiled.

Note: Further details may be summarized in DPR Part-B. Database files in the requisite formats (Excel) may be enclosed as annexure/ appendix separately to the soft copy of FTR.

4. Demonstrative Skill Development and Capacity Building/ Manpower Trained

S. No.	Type of Activities	Details with	Activity Intended for		cipan	its/Trained	
		number		SC	ST	Woman	Total
1.	Workshops	07	 A "Brain storming workshop on System Dynamic model: Livelihood and water resources" was organized at CSIR-4PI, on 12-14 March, 2020. Stakeholder consultation Workshop -6 	7	4	28	183
2.	On Field Trainings	06	 'Watershed management and livelihood enhancement' during 12- 21 May, 2019 under consultative meetings titled "System Dynamic 		3	13	60

			 model: Livelihood and water resources of Kosi watershed" Inception workshop & review workshop 			
3.	Skill Development			 		
4.	Academic Supports	5	PhD	 	5	5
		12	Masters		4	12
	Others (if any)			 		

Note: Further details may be summarized in DPR Part-B. Supporting materials may be enclosed as annexure/ appendix separately to the FTR.

5. Linkages with Regional & National Priorities (SDGs, INDC, etc.)/ Collaborations

S. No. L	₋inkages	Details	No. of	Beneficiaries
/0	collaborations		Publications/	
			Events Held	
L (2 2 1 1	Development Goals SDGs)/ Climate Change/INDC targets addressed JJB: Climate Action (SDG 13)	 CSIR- Goal 1,2,3 Climate Action Life on Land Agriculture and Horticulture problems The project's climate change projections (temperature rise of 4°C to 7°C by 2100) emphasize the need for climate adaptation strategies, contributing to SDG 13 goals of mitigating climate change impacts. The study on land-use/land-cover changes reveals significant shifts in agriculture, forest areas, and urbanization, guiding better land management practices for conservation and biodiversity.	- 4 publications	Rural communities of Kosi-watershed and research and developmental organisations Policy-makers, researchers, agriculturists, horticulturists, environmental NGOs, Govt. bodies & local communities in the UJB.

		Hydrological modelling highlighted	
		the importance of baseflow for	
Cle	ean Water &	streamflow sustainability, supporting	
Sai	nitation (SDG 6)	water management practices that	
		ensure clean and sustainable water	
		supplies.	
		The project's focus on horticulture	
		expansion contributes to agricultural	
Zer	ro Hunger (SDG 2)	diversification, which can improve	
		food security and reduce hunger in	
		the region.	
2. Any	y other:	-	

Note: Further details may be summarized in DPR Part-B, Section-6. Supporting materials may be enclosed as annexure/ appendix separately to the FTR.

6. Project Stakeholders/ Beneficiaries and Impacts

S. No.	Stakeholders	Support Activities	Impacts
1.	Line Agencies/	The training programmes on	Capacity building and awareness
	Gram	"Watershed management and	about the use of technological
	Panchayats:	livelihood enhancement" were	input in natural resource
		carried out in Katarmal and	management
		Balta Gram Panchayats by	
		GBPNIHE during Stakeholder	
		consultation at panchayat	
		level- joined by CSIR trainers	
		also	
2.	Govt	Department of Agriculture;	The output from this work will aid
	Departments	Directorote of Herticultures	the stake holders by providing a
	(Agriculture/	Directorate of Horticulture;	holistic, integrative framework for
	Forest/ Water):	Jal Shakti Department;	decision-making. It equips
			stakeholders with actionable
		Indian Meteorological	insights to manage resources
		Department;	sustainably, mitigate risks, and
		Fruit growers and farmers	enhance the resilience of
		association;	ecosystems and communities by:
			 Policy Designing and Evaluation

		Forest, Ecology and	- Governments can simulate
		Environment Department	various policy options
			- Stakeholders can identify the
			most effective use of resources
			based on the model outputs for
			sustainable development
			practices
			Climate Change Adaptation and
			Mitigation
			• Water Resource Management to
			support sustainable water use
			Agricultural Planning for Crop
			Yield Predictions and Irrigation
			Strategies
			Cost-Benefit Analysis supporting
			efficient investment decisions
			 Livelihood Protection of local
			communities by forecasting
			resource availability and risks
			Adaptive Management to enable
			dynamic policy adjustments to
			changing conditions
3.	Villagers/	PRA workshop at selected	Awareness of orchardists and
	Farmers:	villages in the UJB and Kosi	farmers in sustainable
		watersheds	management of agriculture and
			horticulture
4.	SC Community:	-	-
5.	ST Community:	-	Awareness of project outcome
6.	Women Group:	-	Awareness of project outcome
	Others (if any):		n-6. Supporting materials may be enclosed

Note: Further details may be summarized in DPR Part-B, Section-6. Supporting materials may be enclosed as annexure/ appendix separately to the FTR.

7. Financial Summary (Cumulative)

S. Financial Position/Budget Head	Funds Exp Received l	penditure/ Utilized % of Total cost
-----------------------------------	-------------------------	--

Ι.	Salaries/Manpower cost	5933608	5814000	98%
11.	Travel	882254	1013249	100% (excess expenditure
III.	Expendables & Consumables	662610	510660	77%
IV.	Contingencies	662260	603721	91%
V.	Activities & Other Project cost	1467758	1227328	84%
VI.	Institutional Charges	200000	200000	100%
VII.	Equipment	7120950	6989552	98%
	Total	16982665	16358510	96%
	Interest earned			
	Grand Total	16982665		

* Please attach the consolidated and audited Utilization Certificate (UC) and Year wise Statement of Expenditure (SE) separately, *ref.* **Annexure I.**

8. Major Equipment/ Peripherals Procured under the Project** (if any)

	Name of Equipment	Quantity	Cost (INR)	Utilization of the Equipment after
No.				project
1.	Handheld Air Temperature and Relative Humidity sensor with display logger and Disdrometer	1	577013/-	Hourly collection of precipitation-form data using disdrometer. Collection of Air Temperature and Relative Humidity data on field for future research
2.	Automatic Rain Gauges	5	733831/-	Hourly measurements of precipitation data for future research
3.	Automatic Weather Station	1	1049840/-	To be used for 30-minute measurements of meteorological parameters for use in other studies
4.	Nikon Coolpix Camera	1	27881/-	For field data collection
5.	Micro-pipette 0.5-5 MI Thermo	1	18100/-	Water sampling for water quality assessment
6	Godrej GDR, Book Case	1	19997/-	For library usage
7	Workstations	1	223971/-	Computational Research, model simulations for other research projects
8.	AWS with data logger	1	3,68,000/-	To be used for 30-minute measurements of meteorological parameters at field scale for use in other projects

9.	Outdoor air quality sensor	1	5,23,807/-	To be used for continuous monitoring of air quality parameters at field
10.	Hobo water level recorder (SN: 20196711) and accessories	1	75,470/-	To be used for continuous monitoring of water level and temperature at field
11.	Porometer	1	7,21,740/-	Continuous data collection for future research related to the measurements of the pore size and permeability of the stomatal conductance of a leaf for use in other projects
12.	Work station	1	11,55,000/-	Data processing and model simulations
13.	Handheld GPS	1	24,990/-	Continuous data collection for future research
14.	NDVI, Chlorophyll measurement meters	1	8,80,598.82/-	Will be used for the data processing and model simulations related to the estimation of chlorophyll content in plants for other ongoing and future studies
15.	ENVI Image Processing	1	5,89,314/-	To be used for the extraction of information from the satellite data in other projects

**Details should be provided in details (ref Annexure III &IV).

9. Quantification of Overall Project Progress

S. No.	Parameters	Total (Numeric)	Remarks/ Attachments/ Soft copies of documents
1.	IHR States Covered:	2	Upper Jhelum basin, Jammu and Kashmir state. Kosi watershed, Kumaun region of Uttarakhand state.
2.	Project Site/ Field Stations Developed:	5	Kosi and upper Jhelum basin

3.	Scientific Manpower		KU: 4 (PhD); 5(JPF); 1(FA), 11 MSc projects
	Developed		GBPNIHE: 01 (JRF/SRF); 02 (Field
	(Phd/M.Sc./JRF/SRF/	14	Assistant)
	RA):		CSIR: 06 (JRF/SRF/FA), 3 PhD
4.	Livelihood Options		Scoping work for livelihood quality
	promoted:	-	enhancement
5.	Technical/ Training	One	For Rural participatory Appraisal
	Manuals prepared:	0110	r or rara participatory rippraida
6.	Processing Units	(attach	Note applicable
	established	photos)	
7.	No of Species	-	Not applicable
	Collected, <i>if any</i>		
8.	No. of New Species	-	Not applicable
	identified, <i>if any</i>		
9.	New Database	•6 (KU)	• Land use/ land cover (From 1980-2019 and
	generated (Types):	•3	2021-2100)
		(GBPNIHE)	Watershed-wise socio-economic database
			(From 1980-2019 and 2021-2100)
			Streamflow data from 1971-2018
			Precipitation from 1980-2018
			Soil quality (1491 samples)
			Soil texture (725 samples)
			Particulate matter data from 2011-present
			 Revised climate zonation in UJB
			Water quality (50 samples)
			Meteorological data (Kosi)
			Geo-tagged 113 spring database (Kosi)
			Socio-economic data on water demand and
			availability (Kosi).
			Field data collection: 26 stream
			measurements, collected 120 soil samples
			and located 8 springs. Apart from this,
			3000+ Leaf Area Index (LAI) readings,
			530+ leaf properties, 124 Soil Moisture

	Sensor measurements and 124 W.E.T
	sensor measurements were taken.
	 Field Experiments – Five villages- Sunoli,
	Dotiyal Gaon, and Mahat Gaon for wheat
	crop in Kosi watershed
	Input data at 4km downscaled climate data
	for 2001-2016
	Soil and water analysis data, Satellite
	images, LULC maps, Agriculture and
	Horticulture maps
Others (if any)	No

Note: Further details may be summarized in DPR Part-B. Supporting materials may be enclosed as annexure/ appendix separately to the FTR.

11. Knowledge Products and Publications:

S No	Publication/ Knowledge Products	Number		Total Impact	Remarks/
J. NU.	Tublication/ Knowledge Troducts	National	International	Factor	Enclosures
1.	Journal Research Articles/ Special Issue:	04	11	30+	-
2.	Book – Chapter(s)/ Monograph/ Contributed:	02			-
3.	Technical Reports:				
4.	Training Manual (Skill Development/ Capacity Building):				
5.	Papers presented in Conferences/ Seminars:	02			-
6.	Policy Drafts/Papers:				
7.	Others, if any:				

Note: Please append the list of KPs/ publications (with impact factor, DOI, and further details) with due Acknowledgement to NMHS. Supporting materials may be enclosed as annexure/ appendix separately to the FTR.

12. Recommendation on Utility of Project Findings, Replicability and Exit Strategy

Particulars	Recommendations
Utility of the	Potentially insightful knowledge products generated under the project by the
Project	three partners have significant application in the two Himalaya sites and
Findings:	beyond. Some of these are listed below.
	 A versatile digital database designed to enable seamless abstraction and assimilation of data on various resources and processes such as

	environmental, crops, soils, water, climate, demography etc. are useful for diverse purposes- and can be shared with scientific community in the country
	The climate change projections and impact studies have potential to inform climate change adaptation studies in the Himalaya to minimize the adverse impacts of climate change on various sectors in the Himalaya
	The knowledge generated through model development and application can be used to inform strategies for sustainable development of land and water resources in the two basin and extended Himalayan regions.
	 Application of the following models for simulation, analysis and synthesis SWAT-upper Jhelum and KOSI High resolution WRF – canopy model
	 LSTM and Bi-LSTM models: crop production,LAI LAI estimation-Upper Jhelum and Kosi APSIM-WHEAT
	STICS-APPLEWatershed Scenario modelsEcological Indicators
	 Design of model-based scenarios for feedback learning from stakeholder interactions
	One way for better management of water resources could be better prediction of spring high-flows that could be stored for lean period use. Consequently, the numerical model proposed in this study would be useful.
	. The forest fragmentation status produced in this study could be used by the state forest department for targeted plantation activities.
Replicability	Replicability of the project:
of Project/ Way Forward:	The project generated extensive datasets, including hydrology meteorology, LULC, water quality, socio-economics, and climate. This repository is replicable for similar studies in other Himalayan basins facing water resource and land management challenges.

- The utilization of SWAT, SPHY, and Cellular Automata models can be applied to other watersheds with modifications tailored to local conditions. These models can be adapted for basin-scale water and land resource management elsewhere.
- The AI/ML frameworks for predicting spring flows and LULC changes are generic and can be implemented in other regions to assess ecological changes and water availability.
- The outputs provide a replicable framework for climate adaptation strategies, water allocation, spring management, and forest conservation that can guide policy development in other environmentally sensitive regions.

• The participatory approach involving local stakeholders offers a blueprint for enhancing community involvement in sustainable resource management.

Way Forward:

Building on the outcomes of this project, the next steps should focus on replicating the developed System Dynamics Model in other Himalayan basins to address basin-specific environmental and socio-economic challenges. Integrating real-time monitoring data and advanced climate modeling techniques can enhance the predictive accuracy of hydrological and ecological assessments. Collaborative efforts with government bodies, NGOs, and local communities are essential for implementing land and water conservation strategies, reforestation initiatives, groundwater spring rejuvenation, and ecosystem restoration strategies. Expanding carbon accounting and ecosystem service valuation into policy frameworks will bolster climate change adaptation and mitigation measures. Additionally, establishing long-term monitoring stations, creating open-access data repositories, and conducting capacity-building programs for stakeholders

will ensure sustainable water and ecosystem management in the face of future challenges.

Exit Strategy: The exit strategy for this project focuses on embedding its outcomes into policy frameworks, institutional mechanisms, and community-driven initiatives to ensure sustainability and long-term impact. Key findings should be integrated into regional and national water and forest management policies, supported by user-friendly decision-support tools. Collaboration with academic and research institutions can institutionalize the data repositories and modeling frameworks, while capacity-building workshops and training programs can empower stakeholders. Community engagement is critical, with actionable insights like targeted plantation activities and spring rejuvenation programs fostering local ownership. Dissemination of findings through policy briefs, journal articles, and public reports, along with presentations at national and international forums, will promote replication in similar contexts. By following the above strategy, the project outcomes can catalyze sustainable ecosystem management beyond the formal completion of the project.

(PROJECT PROPONENT/ COORDINATOR)

(Signed and Stamped)

Dean Research

(HEAD OF THE INSTITUTION) (Signed and Stamped)

Place: Srinagar..... Date: ...10/12/2024